|
Yiquan Wang(王一权)
|
School of Mathematics and System Sciences, Xinjiang University (Urumqi, Xinjiang)
National Base for Research and Teaching Talents in Basic Sciences "Mathematics"
Major in Mathematics and Applied Mathematics
Tsinghua University Tsien Excellence in Engineering Program - Shenzhen X-Institute (Shenzhen, Guangdong)
Zero One Scholar
IEEE Biometrics Council, membership
E-mail: wyqmath@gmail.com
E-mail: ethan@stu.xju.edu.cn
E-mail: wangyiquan@mails.x-institute.edu.cn
Contact/WeChat: +86-19537838515
Artificial Intelligence
Deep Learning
AI for Science
Bioinformatics
Computational Biology
Mathematical Modeling
Neuroscience
|
个人简介
王一权是新疆大学的本科生,同时也是清华大学钱学森班与深圳零一学院的联合培养学者。他的研究方向为科学智能(AI for Science),致力于融合深度学习、计算生物学与生物信息学等交叉学科方法,以探究复杂的生命系统。其研究工作涵盖蛋白质功能预测、生物序列表征学习、蛋白质设计优化以及蛋白质动力学等领域。研究成果已发表于《Journal of Chemical Information and Modeling》等国际期刊,并被ICLR、ICML、AAAI、BIBM等人工智能或生物信息学领域的顶级会议及其研讨会(Workshop)录用。
教育经历
本科: 新疆大学 数学与系统科学学院--国家理科基础学科研究和教学人才培养"数学"基地--数学与应用数学专业 , 2023.09-2027.06
联培: 清华大学钱学森班-零一学院 , 2024.06-2027.06
访问学生: 深圳湾实验室-神经疾病研究所-袁文课题组, 2025.07-2025.09
研究经历
精选论文
Wang, Y., Cai, M., Dong, Y., et al. (2025). From Signal to Symphony: Exploring 2D Sequence Representations for Protein Function Prediction. Journal of Chemical Information and Modeling (JCR Q1, CAS Q2 Top).
Wang, Y., Ma, Y., Chang, Y., et al. (2025). Diffusion Models at the Drug Discovery Frontier: A Review on Generating Small Molecules versus Therapeutic Peptides. biology (JCR Q1, CAS Q2).
Wang, Y., Zai, J., Liu, Z., et al. (2025). Resilient AI Infrastructure by Design: A Spatially-Aware Framework for Tolerating Clustered Failures. In 4th Annual AAAI Workshop on AI to Accelerate Science and Engineering (AI2ASE).
Wang, Y., Cai, M., Zhang, J., et al. (2025). Adaptive Decision-Making in Multi-Stage Production: A Framework for Cost Optimization under Sampling Uncertainty. Applied Operations and Analytics.
Wang, Y.*, Cai, M., & Huang, T. Y. (2025). AI for disease prediction: Performance insights and key limitations. Journal of Clinical Neuroscience, 138, 111360. (letter, JCR Q3, CAS Q4)
Wang, Y.*, Huang, T. Y., Gao, Q., & Zhang, J. (2025). HeDA: An Intelligent Agent System for Heatwave Risk Discovery through Automated Knowledge Graph Construction and Multi-layer Risk Propagation Analysis. arXiv preprint arXiv:2509.25112.
Wang, X., Wang, Y., & Huang, T. Y. (2025). Crypto-ncRNA: Non-coding RNA (ncRNA) Based Encryption Algorithm. ICLR 2025 Workshop. (Co-first author).
Wang, X., Wang, Y.*, Huang, T. Y., et al. (2025). Octopus Inspired Optimization (OIO): A Hierarchical Framework for Navigating Protein Fitness Landscapes. In 2025 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE. (CCF-B, Co-first author).
Wang, X., Wang, Y.*, & Pan, J. (2025). Digital Art Creation and Copyright Protection in Pollock Style Using GANs, Fractal Analysis, and NFT Generation. ICLR 2025 Workshop. (Co-first author).
Wang, Y.*, Zhang, J., & Chang, Y. (2024, November). A probability prediction model for flood disasters based on Multi-layer Perceptron. In Journal of Physics: Conference Series (Vol. 2905, No. 1, p. 012003). IOP Publishing.
Note: *通讯作者
在Google Scholar的全部文章.
学术参与
Reviewer
NeurIPS 2025 AI for Science Workshop link
NeurIPS 2025 MATH-AI Workshop link
ICML 2025 Workshop on AI for Math link
ICLR 2025 Workshop on AI for Nucleic Acids link
ICLR 2025 Workshop: The 1st Workshop on GenAI Watermarking link
Mini-Reviews in Medicinal Chemistry link
Current Science link
F1000 Research link
科研项目
-
清华大学钱学森班ESRT:From Signal to Symphony: Exploring 2D Sequence Representations for Protein Function Prediction, 2024.8-2025.10
摘要:从蛋白质一级序列预测其功能是计算生物学中的一个基本挑战。虽然深度学习已经取得了显著成就,但序列数据的最优表示方式仍然是一个开放问题。本研究探索了蛋白质声化——将氨基酸序列转换为二维频谱图——作为该任务的表示方法。为了促进这一研究,我们开发了一个包含18,000条序列的基准数据集,涵盖12个功能多样的蛋白质类别。我们的系统评估表明,从一维序列到二维频谱图的结构转换可能是模型预测性能的关键因素。这一观察得到了消融研究的支持,其中仅使用频谱图中的视觉或声学特征的模型都表现出了有效的独立性能,表明该表示本身是这种能力的关键来源。例如,使用没有明确生物物理意义的声化映射的模型达到了81.08%的准确率,而我们的生物物理信息模型达到了84.00%,表明这样的领域知识可能提供了适度的性能提升。当在我们的数据集上从头开始训练时,我们的融合模型的性能与标准Transformer架构(如ESM-2和ProtBERT)相当或略优,表明其在这一特定背景下的数据效率潜力。该模型的泛化潜力进一步得到了其在外部CARE酶分类基准上的性能支持,其中它达到了90.44%的准确率。最后,作为概念验证,我们探索了我们的编码在指导扩散模型生成新颖GFP变体中的效用,这些变体使用计算方法进行了结构可行性评估。我们的工作提供了证据,表明声化在这一背景下的效用可能主要源于其表示结构,为生物序列的特征工程提供了一个视角。
关键词:蛋白质功能预测、声化、生物信号处理、序列表示、生成蛋白质设计
项目地址:GitHub/Symphony_of_Fate 指导老师:魏凯教授
-
2025年大学生创新训练计划(国家级项目;Student Advisor):拷贝数变异的条件扩散模型:用于阿尔兹海默病风险评估, 2025.4-2026.4
摘要:本项目旨在将全基因组测序数据中的基因拷贝数变异(Copy Number Variation, CNV)特征与代谢指标等多维临床数据相融合。利用扩散模型在处理高维模拟数据和蛋白质表型预测中的成功经验,我们将构建一个由CNV特征编码、基因组区域注意力和条件U-Net扩散模块组成的综合框架。这将模拟CNV在基因组中的分布变化和进化过程,分析CNV在调控阿尔茨海默病通路中的具体作用机制,最终提高疾病风险评估和早期干预的准确性。
关键词:Diffusion; Copy Number Variation; WGS; Alzheimer's disease
项目地址: 指导老师:魏凯教授
-
2024年中科院大学生创新实践训练计划(科创计划)(国家级项目;第一负责人):HeDA:基于自动化知识图谱构建和多层风险传播分析的热浪风险发现智能代理系统, 2024.11-2025.9
摘要:热浪在相互关联的气候、社会和经济系统中构成复杂的级联风险,但科学文献中的知识碎片化阻碍了对这些风险路径的全面理解。我们引入了HeDA(热浪发现代理),一个为通过知识图谱构建和多层风险传播分析进行自动化科学发现而设计的智能多代理系统。HeDA处理了超过10,247篇学术论文,构建了一个包含23,156个节点和89,472个关系的综合知识图谱,采用新颖的多层风险传播分析来系统地识别被忽视的风险传输路径。我们的系统在复杂问答任务上达到了78.9\%的准确率,比包括GPT-4在内的最先进基线高出13.7\%。关键是,HeDA成功发现了五条以前未被识别的高影响风险链,例如"热浪→用水需求激增→工业用水限制→小企业中断",这些通过历史案例研究和领域专家审查得到了验证。这项工作呈现了一个新的AI驱动科学发现范式,为开发更具韧性的气候适应战略提供了可行的见解。
关键词:知识图谱、智能代理、热浪风险分析、科学发现、气候适应、多层风险传播
项目地址: 指导老师:葛咏研究员
-
2024年大学生创新训练计划(自治区级项目;第一负责人):k元n立方体在基于区域的故障模型下的哈密尔顿连通性研究, 2024.03-2025.6
摘要:k元n立方体($Q_n^k$)是支持现代AI和HPC工作负载的大规模计算系统的关键拓扑,其中容错能力至关重要。传统的故障模型假设故障是独立和随机的,会产生不切实际的弹性估计,因为现实世界的故障在空间上是相关的,表现为拓扑集群。本文引入了基于区域的故障(RBF)模型,这是一个新的范式,通过直接建模这种空间相关性来解决这一差距。我们的主要贡献是证明了对于奇数$k \geq 3$和$n \geq 2$,$Q_n^k$在充分的RBF条件下保持哈密尔顿连通性——这是无死锁路由和高效任务调度的关键特性。我们提出了一个构造性算法,通过利用自适应分解策略来找到哈密尔顿路径。实验分析表明,我们的方法显著增强了容错能力,并且在远超其保守理论保证的范围内保持稳健。这项工作为在故障聚类普遍存在的系统中维持连通性提供了一个实用的、高性能的解决方案。
关键词:k元n立方体、容错嵌入、哈密尔顿连通、聚类故障、互连网络
项目地址:GitHub/Region-Based Fault Model 指导老师:依明江·沙比尔副教授
-
基于人工智能数字分身技术的老龄人亲情陪伴问题研究, 2024.12-2026.9
研学经历
清华大学-北京大学生命科学联合中心(清华方面)2025年暑期夏令营 2025.07 参见链接
深圳医学科学院/深圳湾实验室暑期研习 2025.07-2025.09
清华大学钱学森力学班暨深圳零一学院 — 零一学者(长期培养) 2024.06-2027.06
布朗大学2025年人工智能冬季学校 (AI Winter School 2025 - CFPU/Brown University Department of Physics) 2025.1
中国人工智能协会CAAI人工智能与技术伦理培训班 2024.9-2024.12
2024年复旦大学数理逻辑暑期学校 2024.08 参见链接
暨南大学2024广东千村调查项目 2024.08 参见链接
武汉大学国家天元数学中部中心-"无理数引发的数学与算法"讨论班 2024.03-2024.6 参见链接
新疆大学创新实验室/"想把回忆拼好给你"CTF校队队员 2024.03-2024.6 参见链接
实习经历
清华大学北京生物结构前沿研究中心 2025.06-present:我开发了多肽结构数据库,从事蛋白质、多肽设计等工作。
华为昇思Mindspore社区联合中科院软件研究所开源实习 2024.09-2025.3: 我利用机器学习、人工智能等技术,实现了基于VGG19的波洛克风格迁移画分形和湍流特征提取及NFT标签生成。目前已被华为公众号报道
玻色量子"星火人"社区实习生 2024.09-present
竞赛荣誉
全国大学生数学建模竞赛(CUMCM) 国家级二等奖, 2025.11
合成生物学创新赛 银奖, 2025 参见链接
The Mathematical Contest in Modeling (MCM, 美国大学生数学建模竞赛) Honorable Mention, 2025.5
2024阿里云天池大学生竞赛全国总决赛第17名, 2024.10参见链接
2024年第十四届APMCM亚太地区大学生数学建模竞赛国家级三等奖, 2024.08
"阿尔法蛋杯"2024年全国业余围棋棋王争霸赛暨"商旅运河杯"城市围棋赛竞赛第15名, 2024.07
新疆青少年业余围棋段位赛第53名, 2024.05
湖南省迎春杯围棋赛第七名, 2024.02
全国青少年智力运动大会围棋赛项第九名, 2024.02
新疆大学漏洞报送荣誉, 2023.10
2023年新疆"天山固网杯"网络安全技能竞赛第七名, 2023.10
网站开发
深圳零一学院课程网站:https://lingyi.wyqmath.cn/
多肽结构数据库:https://www.frcbs.tsinghua.edu.cn/cpdb/
Tong Wang Research Group:https://tongwang.vercel.app/
深圳零一学院简介:
深圳零一学院缘起于清华大学"学堂计划"钱学森力学班(简称"清华钱班")。清华钱班创办于2009 年,是"清华学堂人才培养计划"暨国家"基础学科拔尖学生培养试验计划"66个试点项目中,唯一不是定位于单一学科,而是工科基础(或力学与工程技术所有学科交叉创新)的试验班。其使命是:发掘和培养有志于通过科技改变世界、造福人类的创新型人才,探索未来创新人才的培养模式,回答"钱学森之问"。
简历下载.
Personal Profile
Yiquan Wang is an undergraduate student at Xinjiang University and a joint-training scholar in the Tsien Excellence in Engineering Program at Tsinghua University & X-Institute. His research focuses on AI for Science, at the intersection of deep learning, computational biology, and bioinformatics. He is dedicated to developing advanced computational models to investigate complex biological systems, with research topics spanning protein function prediction, biological sequence representation, protein design optimization, and protein dynamics. His work has been published in journals like the Journal of Chemical Information and Modeling and at top-tier conferences in artificial intelligence and bioinformatics, including ICLR, ICML, AAAI, and BIBM.
Education
Undergraduate: Xinjiang University School of Mathematics and System Sciences--National Base for Research and Teaching Talents in Basic Sciences "Mathematics"--Major in Mathematics and Applied Mathematics , 2023.09-2027.06
Main Courses: Mathematical Analysis, Advanced Algebra, Analytical Geometry, Partial Differential Equations, Functional Analysis, etc. See Mathematics Base Introduction
Joint Training: Tsinghua University Tsien Excellence in Engineering Program - Shenzhen X-Institute , 2024.06-2027.06
Visiting Student: Shenzhen Bay Laboratory-Institute of Neurological and Psychiatric Disorders-Wen Yuan Research Group, 2025.07-2025.09
Research Experience
Selected Papers
Wang, Y., Cai, M., Dong, Y., et al. (2025). From Signal to Symphony: Exploring 2D Sequence Representations for Protein Function Prediction. Journal of Chemical Information and Modeling (JCR Q1, CAS Q2 Top).
Wang, Y., Ma, Y., Chang, Y., et al. (2025). Diffusion Models at the Drug Discovery Frontier: A Review on Generating Small Molecules versus Therapeutic Peptides. biology (JCR Q1, CAS Q2).
Wang, Y., Zai, J., Liu, Z., et al. (2025). Resilient AI Infrastructure by Design: A Spatially-Aware Framework for Tolerating Clustered Failures. In 4th Annual AAAI Workshop on AI to Accelerate Science and Engineering (AI2ASE).
Wang, Y., Cai, M., Zhang, J., et al. (2025). Adaptive Decision-Making in Multi-Stage Production: A Framework for Cost Optimization under Sampling Uncertainty. Applied Operations and Analytics.
Wang, Y.*, Cai, M., & Huang, T. Y. (2025). AI for disease prediction: Performance insights and key limitations. Journal of Clinical Neuroscience, 138, 111360. (letter, JCR Q3, CAS Q4)
Wang, Y.*, Huang, T. Y., Gao, Q., & Zhang, J. (2025). HeDA: An Intelligent Agent System for Heatwave Risk Discovery through Automated Knowledge Graph Construction and Multi-layer Risk Propagation Analysis. arXiv preprint arXiv:2509.25112.
Wang, X., Wang, Y., & Huang, T. Y. (2025). Crypto-ncRNA: Non-coding RNA (ncRNA) Based Encryption Algorithm. ICLR 2025 Workshop. (Co-first author).
Wang, X., Wang, Y.*, Huang, T. Y., et al. (2025). Octopus Inspired Optimization (OIO): A Hierarchical Framework for Navigating Protein Fitness Landscapes. In 2025 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE. (CCF-B, Co-first author).
Wang, X., Wang, Y.*, & Pan, J. (2025). Digital Art Creation and Copyright Protection in Pollock Style Using GANs, Fractal Analysis, and NFT Generation. ICLR 2025 Workshop. (Co-first author).
Wang, Y.*, Zhang, J., & Chang, Y. (2024, November). A probability prediction model for flood disasters based on Multi-layer Perceptron. In Journal of Physics: Conference Series (Vol. 2905, No. 1, p. 012003). IOP Publishing.
Note: *Corresponding author
All articles on Google Scholar.
Academic Participation
Reviewer
NeurIPS 2025 AI for Science Workshop link
NeurIPS 2025 MATH-AI Workshop link
ICML 2025 Workshop on AI for Math link
ICLR 2025 Workshop on AI for Nucleic Acids link
ICLR 2025 Workshop: The 1st Workshop on GenAI Watermarking link
Mini-Reviews in Medicinal Chemistry link
Current Science link
F1000 Research link
Research Projects
-
Tsinghua University Qian Xuesen Class ESRT: From Signal to Symphony: Exploring 2D Sequence Representations for Protein Function Prediction, 2024.8-2025.10
Abstract: Predicting protein function from its primary sequence is a fundamental challenge in computational biology. While deep learning has excelled, the optimal representation of sequence data remains an open question. This study explores protein sonification---the conversion of amino acid sequences into 2D spectrograms---as a representation for this task. To facilitate this investigation, we developed a benchmark dataset of 18,000 sequences spanning 12 functionally diverse protein classes. Our systematic evaluation suggests that the structural transformation from a 1D sequence to a 2D spectrogram may be a key contributor to the model's predictive performance. This observation is supported by ablation studies where models using either purely visual or acoustic features from the spectrogram demonstrated effective standalone performance, suggesting that the representation itself is a key source of this capability. For instance, a model using a sonification map without explicit biophysical meaning achieved 81.08% accuracy, while our biophysically-informed model reached 84.00%, indicating that such domain knowledge may offer a modest performance benefit. When trained from scratch on our dataset, our fusion model achieved performance comparable to or slightly exceeding that of standard transformer architectures like ESM-2 and ProtBERT, suggesting its potential for data efficiency in this specific context. The model's potential for generalizability was further supported by its performance on the external CARE enzyme classification benchmark, where it achieved 90.44% accuracy. Finally, as a proof-of-concept, we explore the utility of our encoding to guide a diffusion model in generating novel GFP variants, which were assessed for structural viability using computational methods. Our work provides evidence suggesting that the utility of sonification in this context may stem largely from its representational structure, offering a perspective on feature engineering for biological sequences.
Keywords: Protein Function Prediction, Sonification, Biological Signal Processing, Sequence Representation, Generative Protein Design
Project Address:GitHub/Symphony_of_Fate Supervised by Prof. Kai Wei.
-
2025 College Student Innovation Training Project (National Level Project; Student Advisor): Copy Number Variation Conditional Diffusion Model: For Alzheimer's Disease Risk Assessment, 2025.4-2026.4
Abstract: This project aims to integrate copy number variation (CNV) features from whole-genome sequencing data with multi-dimensional clinical data such as metabolic indicators. Leveraging the success of diffusion models in processing high-dimensional simulation data and protein phenotype prediction, we will construct a comprehensive framework consisting of CNV feature encoding, genomic region attention, and conditional U-Net diffusion modules. This will simulate CNV distribution changes and evolutionary processes in the genome, analyze the specific role of CNV in regulating Alzheimer's disease pathways, and ultimately improve disease risk assessment and early intervention accuracy.
Keywords: Diffusion; Copy Number Variation; WGS; Alzheimer's disease
Project Address: Supervised by Prof. Kai Wei.
-
2024 Chinese Academy of Sciences Undergraduate Innovation Practice Training Program (National Level Project; First Responsible Person): HeDA: An Intelligent Agent System for Heatwave Risk Discovery through Automated Knowledge Graph Construction and Multi-layer Risk Propagation Analysis, 2024.11-2025.9
Abstract: Heatwaves pose complex cascading risks across interconnected climate, social, and economic systems, but knowledge fragmentation in scientific literature hinders comprehensive understanding of these risk pathways. We introduce HeDA (Heatwave Discovery Agent), an intelligent multi-agent system designed for automated scientific discovery through knowledge graph construction and multi-layer risk propagation analysis. HeDA processes over 10,247 academic papers to construct a comprehensive knowledge graph with 23,156 nodes and 89,472 relationships, employing novel multi-layer risk propagation analysis to systematically identify overlooked risk transmission pathways. Our system achieves 78.9% accuracy on complex question-answering tasks, outperforming state-of-the-art baselines including GPT-4 by 13.7%. Critically, HeDA successfully discovered five previously unidentified high-impact risk chains, such as "heatwave → water demand surge → industrial water restrictions → small business disruption," which were validated through historical case studies and domain expert review. This work presents a new paradigm for AI-driven scientific discovery, providing actionable insights for developing more resilient climate adaptation strategies.
Keywords: Knowledge Graph, Intelligent Agents, Heatwave Risk Analysis, Scientific Discovery, Climate Adaptation, Multi-layer Risk Propagation
Project Address: Supervised by Researcher Yong Ge.
-
2024 College Student Innovation Training Project (Autonomous Region Level Project; First Responsible Person): Research on the Generation Cyclability of Cartesian Product Graphs and Related Problems, 2024.03-2025.6
Abstract: The $k$-ary $n$-cube ($Q_n^k$) is a critical topology for large-scale computing systems powering modern AI and HPC workloads, where fault tolerance is paramount. Traditional fault models, which assume faults are independent and random, yield unrealistic resilience estimates because real-world failures are spatially correlated, manifesting as topological clusters. This paper introduces the Region-Based Fault (RBF) model, a new paradigm that addresses this gap by directly modeling this spatial correlation. Our primary contribution is a proof that for odd $k \geq 3$ and $n \geq 2$, the $Q_n^k$ remains Hamiltonian-connected—a property vital for deadlock-free routing and efficient task scheduling—under a sufficient set of RBF conditions. We present a constructive algorithm that finds a Hamiltonian path by leveraging an adaptive decomposition strategy. Experimental analysis demonstrates that our approach significantly enhances fault tolerance and remains robust far beyond its conservative theoretical guarantees. This work provides a practical, high-performance solution for maintaining connectivity in systems where fault clustering is prevalent.
Keywords: $k$-ary $n$-cubes, fault-tolerant embedding, Hamiltonian-connected, clustered faults, interconnection networks.
Project Address:GitHub/Region-Based Fault Model Supervised by Prof. Eminjan Sabir.
-
Research on Elderly Companionship Solutions Based on Artificial Intelligence Digital Twin Technology, 2024.12-2026.9
Abstract: This project, centered on artificial intelligence digital twin technology, aims to alleviate the lack of family companionship for the elderly in China's aging society, bridge the digital divide for older adults, and enhance primary and secondary school students' artificial intelligence practical capabilities. Implemented by Shenzhen X - Institute in collaboration with ByteDance and other organizations, the project is divided into preparation, implementation, and promotion phases. It plans to facilitate students in customizing personalized digital twins for the elderly, enhancing intergenerational communication, and exploring application scenarios of AI large models in social welfare. The project not only provides companionship and psychological support for the elderly at a spiritual level but also opens up a new path for Chinese-style elderly care while promoting artificial intelligence education and social innovation development. Through multi-party collaboration, risk management, and media promotion, the project will achieve the goal of progressing from pilot programs to nationwide promotion, with significant social, educational, and technological implications.
Keywords: Artificial Intelligence; Social Innovation
Project Address: Supervised by Min Tang (Former Counselor of the State Council).
Learning Experience
Tsinghua University-Peking University Center for Life Sciences (Tsinghua) 2025 Summer Camp 2025.07 See Link
Shenzhen Academy of Medical Sciences / Shenzhen Bay Laboratory Summer Research 2025.07-2025.09
Tsinghua University Qian Xuesen Mechanics Class and Shenzhen X - Institute — Zero One Scholar (Long-term Training) 2024.06-2027.06
AI Winter School 2025 - CFPU/Brown University Department of Physics 2025.1
CAAI Artificial Intelligence and Technology Ethics Training Course by China Association for Artificial Intelligence 2024.9-2024.12
2024 Fudan University Summer School of Mathematical Logic 2024.08 See Link
Jinan University 2024 Guangdong Thousand Villages Survey Project 2024.08 See Link
Wuhan University National Tianyuan Mathematics Central Center - "Mathematics and Algorithms Triggered by Irrational Numbers" Discussion Class 2024.03-2024.6 See Link
Xinjiang University Innovation Laboratory/"Want to Put Memories Together for You" CTF Team Member 2024.03-2024.6 See Link
Internship Experience
Beijing Frontier Research Center for Biological Structure, Tsinghua University 2025.06-present: I developed the Polypeptide Structure Database and have been engaged in work on protein and polypeptide design.
Huawei Mindspore Community & Chinese Academy of Sciences Institute of Software Open Source Internship 2024.09-2025.3: I utilized machine learning, artificial intelligence, and other technologies to implement VGG19-based Pollock style transfer paintings with fractal and turbulence feature extraction and NFT tag generation. Currently reported by Huawei Official Account
Bose Quantum "Spark People" Community Intern 2024.09-present
Competition Honors
Contemporary Undergraduate Mathematical Contest in Modeling (CUMCM) National Second Prize, 2025.11
SynBio Challenges Silver Award, 2025 See Link
The Mathematical Contest in Modeling (MCM) Honorable Mention, 2025.5
2024 Alibaba Cloud Tianchi University Student Competition National Finals 17th Place, 2024.10See Link
2024 14th APMCM Asia-Pacific Mathematical Modeling Competition National Third Prize, 2024.08
"Alpha Egg Cup" 2024 National Amateur Go King Championship and "Commercial Travel Grand Canal Cup" City Go Competition 15th Place, 2024.07
Xinjiang Youth Amateur Go Dan Level Competition 53rd Place, 2024.05
Hunan Province Spring Cup Go Competition 7th Place, 2024.02
National Youth Intellectual Sports Meeting Go Competition 9th Place, 2024.02
Xinjiang University Vulnerability Reporting Honor, 2023.10
2023 Xinjiang "Tianshan Fixed Network Cup" Network Security Skills Competition 7th Place, 2023.10
Website Development
Shenzhen X-Institute Course Website: https://lingyi.wyqmath.cn/
Polypeptide Structure Database: https://www.frcbs.tsinghua.edu.cn/cpdb/
Tong Wang Research Group: https://tongwang.vercel.app/
About Tsinghua University Tsien Excellence in Engineering Program - Shenzhen X-Institute:
Shenzhen X-Institute originated from the Tsinghua University "Xuetang Plan" Qian Xuesen Mechanics Class (abbreviated as "Tsinghua Qian Class"). Founded in 2009, Tsinghua Qian Class is one of the 66 pilot projects of the National "Outstanding Student Training Experimental Program for Basic Disciplines" and the "Tsinghua Xuetang Talent Training Plan". It is the only experimental class not positioned in a single discipline, but focused on engineering foundations (or interdisciplinary innovation across mechanics and all engineering technology disciplines). Its mission is to discover and cultivate innovative talents who aspire to change the world and benefit humanity through technology, explore future innovative talent training models, and answer "Qian Xuesen's Question".
Curriculum Vitae Download.
|