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aCollege of Mathematics and System Science, Xinjiang University, Urumqi, Xinjiang, China; bXinjiang Key Laboratory of Biological 
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ABSTRACT
In multi-stage production, manufacturers face a critical trade-off between the cost 
of proactive quality control and the risk of downstream defects. This paper 
challenges the default strategy of early inspection by developing a unified frame
work to determine when a reactive, end-of-line recovery approach is more cost- 
effective. Our model uniquely integrates multi-stage production dynamics, the 
economic trade-offs of reverse logistics, and the statistical uncertainty of sampling 
inspection. Through optimization with a Genetic Algorithm, we identify specific, 
data-driven thresholds for market failure cost and initial defect rates where the 
optimal policy shifts decisively from selective to comprehensive upstream inspec
tion. Furthermore, the analysis quantifies the value of information, demonstrating 
that higher data accuracy from stricter sampling protocols yields lower long-term 
costs by stabilizing decision-making. By providing a quantitative tool that adapts 
to evolving risk profiles, this research offers a practical approach for aligning cost 
optimization with the principles of Quality 4.0 and sustainable manufacturing.
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1. Introduction

In complex manufacturing, such as the assembly of a “Smart Power Module”, managers face a high- 
stakes trade-off. Should they invest in costly inspections of every incoming batch of components to 
catch defects early, or should they risk letting faulty parts propagate through the assembly line and 
deal with non-functional modules at the end? This decision is pivotal, as the cost of poor quality 
(COPQ) can consume up to 40% of revenue in some sectors (Kolus et al., 2023; Walston et al.,  
2025). The dilemma is further complicated by the statistical uncertainty inherent in sampling-based 
quality control, where the true defect rate of a batch is never perfectly known. This paper presents 
a framework to address this trade-off, providing a data-driven strategy to minimize total cost under 
uncertainty.

The motivation for this research stems from an opportunity to build on existing models, which 
may not always capture the dynamic and interconnected nature of modern production. For instance, 
some Cost of Quality (COQ) frameworks are based on deterministic assumptions and may not 
explicitly include variables such as reverse logistics – the economic decision to disassemble defective 
products for component reuse, a choice with implications for both cost and sustainability (Govindan 
et al., 2015; Psomas et al., 2022). This context supports a shift toward paradigms like Quality 4.0 (Liu 
et al., 2023; Sader et al., 2022; Zulqarnain et al., 2022), which leverages data for adaptive optimization, 
and Quality 5.0 (Fiałkowska-Filipek & Dobrowolska, 2023; Frick & Grudowski, 2023), which incor
porates human-centricity and sustainability. Our research contributes to this area by proposing 
a framework that integrates multi-stage production dynamics, adaptive sampling, and a detailed 
cost structure within a computationally tractable optimization model.

This leads to our central research question: Under what conditions is it more cost-effective to alter the 
intensity of intermediate inspections and instead rely on end-of-line verification and strategic component 
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recovery? To answer this, we develop and validate a model that identifies robust, cost-optimal strategies that 
adapt to evolving quality data and changing risk profiles over multiple production cycles. This paper makes 
the following primary contributions:

● An integrated optimization framework: We propose a framework that integrates multi-stage pro
duction dynamics, the economic trade-offs of reverse logistics (disassembly), and the statistical 
uncertainty inherent in sampling-based quality control.

● An adaptive policy analysis: Our analysis illustrates how the cost-optimal strategy adapts to risk. We 
identify specific thresholds where changes in market failure costs or initial defect rates favor a shift to 
comprehensive upstream inspection, which provides a more nuanced alternative to a single, static 
strategy.

● A quantitative analysis of information value: We provide simulation-based evidence that higher data 
accuracy (e.g., a 95% vs. 90% confidence level) can yield long-term cost savings by stabilizing decision- 
making, offering a managerial insight into the value of quality data.

● Qualitative validation with industry practitioners: To ground our model in practice, we validate its 
core assumptions through semi-structured interviews with experienced quality managers, confirming 
its alignment with real-world operational challenges (Section 6.4).

The remainder of this paper is organized as follows. Section 2 reviews the relevant literature to position 
our work, Section 3 details our methodological framework, Section 4 presents the results, Section 5 
provides a validation and sensitivity analysis, Section 6 discusses the findings, and Section 7 concludes 
the paper.

2. Related works

Our research is situated at the intersection of multi-stage quality control, cost optimization, and decision- 
making under uncertainty. A critical review of the literature reveals significant gaps that this paper aims to 
address.

First, traditional approaches to quality control in multi-stage systems have centered on methods like 
Statistical Process Control (SPC) and static acceptance sampling plans (Montgomery, 2020). While founda
tional, these methods typically treat production stages as isolated entities, optimizing them locally without 
fully capturing the systemic effects of defect propagation. This perspective overlooks crucial dynamic 
feedback mechanisms where downstream outcomes could inform upstream inspection strategies in real- 
time (Ait-El-Cadi et al., 2021). Consequently, their static nature is ill-suited for modern, agile manufactur
ing environments where system dynamics, such as machine degradation (Colledani & Tolio, 2012), cause 
process parameters and defect rates to fluctuate (Sarhangian et al., 2008), creating a need for a more 
integrated and adaptive framework.

Second, existing optimization models, while more sophisticated, present their own set of limita
tions. The dominant Cost of Quality (COQ) paradigm often provides a static and deterministic 
view, categorizing expenses to find an optimal quality level (Shank & Govindarajan, 1993; Sharma & 
Laishram, 2025). However, many such models, which may be based on criteria like quality costs or 
added value, face challenges incorporating real-world data and dynamic conditions (Hamrol et al.,  
2020; Reis et al., 2025). These models also frequently omit strategic variables central to modern 
sustainable manufacturing, such as the economic decision to disassemble defective products for 
component reuse – a key tenet of the circular economy (Govindan et al., 2015; Kannan et al., 2017). 
Furthermore, they often fail to account for the financial implications of uncertainty inherent in 
quality estimation (Jolai et al., 2020). On the theoretical front, while powerful frameworks like 
Markov Decision Processes (MDPs), queueing models (Satheesh Kumar & Nagarajan, 2023), and 
Partially Observable MDPs (POMDPs) exist for sequential decision-making under uncertainty 
(Anthony, 1998; Arcieri et al., 2023; Nodem et al., 2011; S. Qiu et al., 2025; Yao et al., 2005), 
they often suffer from the “curse of dimensionality”, rendering them computationally intractable for 
real-world systems with numerous components and stages (Matthijs, 2012). This computational 
barrier has fueled the development of advanced decision support tools, such as Simulation 
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Optimization, which is increasingly vital in the Industry 4.0 era (Ghasemi et al., 2024). This also 
justifies the exploration of powerful metaheuristics, like Genetic Algorithms (GAs), which have 
proven effective for complex, NP-hard production problems (Rajwar et al., 2023; Rao et al., 2008; 
Zhang et al., 2014) but are less commonly applied to find an evolving policy over multiple cycles 
under sampling uncertainty (Zwingel et al., 2024).

Consequently, as suggested by reviews of the field (Rezaei-Malek et al., 2019), an opportunity 
exists for a framework that integrates the statistical uncertainty of dynamic sampling, the economic 
trade-offs of reverse logistics, and the interdependencies of multi-stage production within 
a computationally feasible model. While existing studies provide a strong foundation, many focus 
on isolated stages, may not include certain economic and sustainability variables, or utilize 
optimization methods that can be challenging to scale. This paper aims to contribute by developing 
a framework that addresses these elements, with the goal of providing a tool that is both 
theoretically integrated and practically applicable.

3. Methods

To systematically address the adaptive decision-making problem in multi-stage production, we have 
constructed a hierarchical methodological framework, as illustrated in Figure 1. Our approach follows 
a clear, progressive four-step logic, building from foundational components to a comprehensive, realistic 
model:

(1) Establishing the Foundation for Uncertainty Analysis: We first introduce a two-stage sampling 
inspection model in Section 3.1. This provides the statistical toolkit for handling input quality 
uncertainty in all subsequent decisions.

(2) Solving the Core Trade-off Problem: Next, in Section 3.2, we develop a dynamic optimization 
model for a foundational two-component system, solved using a Genetic Algorithm. This step is 
designed to explore the core economic trade-offs inherent in production decisions.

(3) Validating Model Scalability: To then verify the applicability of our core findings in more complex 
scenarios, we design a computationally efficient stage-wise greedy heuristic for a multi-component 
system in Section 3.3.

(4) Constructing the Integrated Decision Framework: Finally, in Section 3.4, we integrate the sampling 
uncertainty from Section 3.1 with the dynamic model from Section 3.2 to form our comprehensive 
framework, capable of dynamic optimization under uncertainty.

This structured approach ensures the rigor and relevance of our research, with the framework’s principles 
subsequently validated against industry practice in Section 6.4.

3.1. Two-stage inspection model

To efficiently manage input quality uncertainty, we designed a two-stage sequential inspection model 
based on the principles of the Sequential Probability Ratio Test (SPRT) (Wald, 1992). This approach 
minimizes the average sample size required for a decision compared to fixed-sample tests with 
equivalent error rates (Chetouani, 2014). To ensure statistical rigor and avoid approximation errors, 
all acceptance and rejection thresholds were calculated directly from the exact binomial cumulative 
distribution function (CDF), as detailed in Algorithm 1. The plan’s statistical power and decision 
boundaries are visualized in Figures 2(a,b). This statistically rigorous, sequential approach provides 
a cost-effective and robust method for quality assessment, allowing for early decisions when evidence 
is strong while demanding more data in ambiguous cases.

APPLIED OPERATIONS AND ANALYTICS 3
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3.2. Dynamic model for cost minimization

To find the optimal operational policy for assembling the Smart Power Module, we constructed a dynamic 
optimization model aimed at minimizing total costs over multiple production cycles. The model’s decisions 
are represented by binary variables for each cycle n: inspection of the Control PCB (xn

1), inspection of the 
Power Transistor (xn

2), inspection of the final Smart Power Module (yn), disassembly of defective units (zn), 
and processing of returns (wn).

The component inspection cost, Cn
Sparepart, captures the trade-off between proactive inspection and 

reactive failure cost. It is the sum of the direct inspection cost and the expected cost of allowing 
a defective part into the assembly line if no inspection is performed. 

Here, for each component i 2 f1; 2g in cycle n, xn
i is the binary decision to inspect, Cdi is the direct cost of 

inspection, pn
i is the defect rate, and Cbi is the failure cost if a defective component is used.

Similarly, the assembly and product inspection cost, Cn
assembly, includes fixed assembly costs and the cost 

of either inspecting the final product or facing market failure costs for undetected defects. 

In this equation, Cassembly is the fixed cost of assembly, yn is the decision to inspect the final product, 
Casproduct is the product inspection cost, pn

product is the probability of the final product being defective, and 
Cmarket is the cost of a market failure.

The model also incorporates reverse logistics costs, including rework (disassembly and reuse, Cn
rework) 

and return processing (Cn
return), where zn and wn are the respective binary decisions and Cdisassemble is the 

disassembly cost. 

Defect rates are modeled to decrease over cycles due to learning effects, governed by a learning rate αi for 
each component i: 

The objective is to minimize the total cost over N cycles, 
Ctotal ¼

PN
n¼1ðCn

Sparepart þ Cn
assembly þ Cn

rework þ Cn
returnÞ. The resulting NP-hard optimization problem was 

solved using a Genetic Algorithm (implemented with DEAP) Hartmanis 1982; Pavlov et al. 2019; De Jong  

Algorithm 1: Two-Stage Inspection Model

6 Y. WANG ET AL.



1988 The model’s contribution lies not in the algorithm itself – which uses a standard configuration of 
binary encoding, tournament selection, two-point crossover, and bit-flip mutation (see Algorithm 2) – but 
in its comprehensive cost function that integrates production, reverse logistics, and market failure costs over 
a multi-cycle horizon.

To ensure the robustness, reliability, and validity of our GA configuration, we conducted 
a comprehensive set of validation experiments. These experiments were designed to systematically address 
three key aspects: (1) the justification of our chosen hyperparameters through rigorous parameter tuning, 
(2) the statistical stability of the results against random chance through large-scale repeated runs, and (3) the 
confirmation of algorithmic convergence within the specified number of generations (as confirmed by 
Figure 2(c)). The detailed methodologies and results of this validation process are presented in Section 4.3.

3.3. Multi-stage production optimization model

While the Genetic Algorithm (Section 3.2) is effective for the foundational model, its computational cost 
increases dramatically with the number of decision variables. Therefore, to handle a more realistic 
8-component inverter system and validate the scalability of our core findings, we designed 
a computationally efficient stage-wise greedy heuristic. This model extends our framework to accommodate 
a larger number of unique components (Nc ¼ 8), multiple intermediate semi-finished products (Ns ¼ 3), 
and a final end product.

Let I ¼ f1; . . . ;Ncg be the set of components and J ¼ f1; . . . ;Nsg be the set of semi-finished products. 
We define a mapping Ij � I representing the set of components required to assemble semi-finished product 
j. The decision variables are expanded to a vector for each cycle n: component inspection decisions 
xn ¼ ðxn

1 ; . . . ; xn
Nc
Þ, semi-finished product inspection decisions yn ¼ ðyn

1 ; . . . ; yn
Ns
Þ, and a final product 

inspection decision zn.
The effective defect rate of a component i entering the assembly process, p0i;n, depends on the inspection 

decision xn
i : 

where pi;n is the intrinsic defect rate of the incoming batch of component i in cycle n. The probability of 
a semi-finished product j being defective, psemi;j;n, is then determined by the effective defect rates of its 
constituent components: 

This formula captures the cumulative risk: a semi-finished product is non-defective only if all its parts are 
non-defective. Similarly, the effective defect rate of a semi-finished product, p0semi;j;n, and the final product 
defect rate, pproduct;n, are given by: 

Algorithm 2: Dynamic Model Algorithm for Minimizing Total Cost (GA)

APPLIED OPERATIONS AND ANALYTICS 7



A key feature of this multi-stage model is the risk_multiplier (Eq. 10), which strategically projects the 
ultimate financial risk of market failure back to every upstream decision point. 

where Cmarket is the market price of the final product and λ is a scaling factor (set to 50.0 in our simulations). 
The cost of failure for a component i, used for decision-making, is then: 

This ensures that even low-cost components are evaluated based on their potential impact on the high-value 
final product, promoting a system-wide risk mitigation strategy that weighs every choice against the most 
critical downstream consequence.

The stage-wise greedy optimization heuristic is then applied. An inspection is performed only if its cost is 
less than the expected failure cost it prevents. The decision rules are formalized as: 

where 1f�g is the indicator function, and the costs Cdi , Cinsp;semi;j, Cdproduct represent the direct inspection costs 
for components, semi-finished products, and the final product, respectively. The model, outlined in 
Algorithm 3, iteratively applies these rules, calculates costs, and updates defect rates for the next cycle, 
providing a scalable and risk-aware solution for complex production lines.

3.4. Integrated framework with Closed-Loop Feedback

The final model integrates the preceding frameworks to create a closed-loop feedback system, representing 
a more realistic decision-making scenario. Here, the defect rate is not a known parameter but a dynamic 

Algorithm 3: Multi-Stage Production Optimization (Heuristic)
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statistical estimate (p̂i) derived from sampling. Decisions in each cycle are based on the latest available data, 
such as inspecting a component only if its detection cost is less than the estimated expected loss: 

Here, p̂n
i is the estimated defect rate for component i in cycle n. The system learns over time by updating its 

estimates for the next cycle, using a learning rate α: 

This integration explicitly models the challenge of making robust decisions under statistical uncertainty, 
where the quality of information directly impacts the quality of the strategy. This provides a resilient and 
practical decision-making tool.

3.5. Simulation parameters

The experimental design simulates a multi-stage production system centered on the Smart Power 
Module assembly scenario described in the 2024 Contemporary Undergraduate Mathematical 
Contest in Modeling (CUMCM) problem C (China Undergraduate Mathematical Contest in 
Modeling Organizing Committee, 2024). The core of the experiment is to determine the optimal 
set of decisions – whether to inspect components, semi-finished, and final products, and whether to 
disassemble non-conforming or returned units – to minimize total system cost, as depicted in 
Figure 3.

To ground our simulation in a realistic context despite the absence of a specific empirical 
dataset, we established key parameters based on a combination of literature and common industry 
heuristics. The Market Failure Cost (Cmarket) was set at a significant multiple of the component 
costs, reflecting the substantial losses from warranty, recalls, and reputation damage, which can be 
exceptionally high (Faciane, 2018). Other parameters were set to create a plausible and non-trivial 
decision-making environment: the initial defect rate was assumed to be 10% as a common baseline 
for new processes; the learning rate (αi ¼ 0:35) represents an optimistic scenario of process 
improvement to explore the model’s behavior under favorable learning conditions; and relative 
costs for inspection and disassembly were chosen to make the trade-offs meaningful. The sensitivity 
of the model’s conclusions to these cost parameters and the learning rate is rigorously tested in 
Section 5.

The simulation is grounded in a two-stage sampling strategy designed for a nominal defect rate of 
p ¼ 10%. The statistical thresholds are set to achieve a 95% confidence level in rejecting non- 
conforming batches (Type I error, α ¼ 0:05) and a 90% confidence level in accepting conforming 
ones (Type II error, β ¼ 0:10). Cost minimization studies were performed using a Genetic Algorithm 
(GA) with a population size of 50 evolved over 40 generations. In the final phase, we introduced 
sampling uncertainty by estimating defect rates through random sampling at both 95% and 90% 
confidence levels to test the robustness of the optimal strategies.

4. Results

4.1. Optimal two-stage sampling inspection strategy

We first established an efficient two-stage sampling inspection model. For a nominal 10% defect rate 
and a 5% error margin, we defined acceptance and rejection thresholds for both 95% and 90% 
confidence levels. More importantly, we developed a generalized dynamic sampling model, pre
sented in Table 1. This model introduces intermediate stopping rules, allowing for decisions to be 
made as soon as sufficient statistical evidence is gathered, without needing to complete the full 
sample. This dynamic approach, consistent with SPRT principles (Figure 2(a,b)), significantly 
enhances inspection efficiency and operational flexibility compared to a rigid, fixed-sample plan.

APPLIED OPERATIONS AND ANALYTICS 9
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4.2. Model behavior under different risk scenarios

To validate the framework’s ability to adapt to changing risk profiles, we tested the multi-stage 
production model under three distinct scenarios. The results, summarized in Table 2, demonstrate 
the framework’s adaptive responsiveness. Under baseline conditions, the model derives a nuanced and 
economically rational selective inspection strategy (‘[0, 1, 1, 0, 1, 1, 1, 1]’). However, when faced with 
elevated market or quality risks, the strategy decisively shifted to comprehensive upstream inspection 
(‘[1, 1, 1, 1, 1, 1, 1, 1]’). This demonstrates our framework’s ability to identify risk “tipping points” and 
dynamically adjust its policy.

4.3. Optimization under sampling uncertainty

Introducing sampling uncertainty highlights the tangible economic value of data accuracy. As shown 
in Tables 3–5, while the core strategy of prioritizing disassembly remained robust, the total system 
cost was consistently lower under a 95% confidence level compared to a 90% level (e.g., 24.67 vs. 
25.97 in the complex scenario). This cost saving stems from improved decision stability. Figure 4 
visually confirms that higher-confidence sampling leads to more predictable and stable defect rate 
estimates, enabling better long-term optimization and quantifying the return on investment in data 
quality.

Table 1. Generalized dynamic sampling model stopping rules.
Sample Size 50 65 80 95 110 125 139

Rejection Threshold 9 11 13 15 16 18 20
Acceptance Threshold 2 4 5 6 7 8 9

Table 5. Results for complex assembly under sampling 
uncertainty.

Confidence Level Total Cost Total Cycles

95% 24.67 2
90% 25.97 2

Table 4. Decision analysis results under sampling uncertainty at a 90% confidence level.
Scenario Inspect P1 Inspect P2 Inspect Final Disassemble Total Cost Cycles

1 False False False True 31.00 2
2 False False False True 47.91 3
3 False False False True 30.58 2
4 False False False True 42.75 3
5 False False False True 42.18 3
6 False False False False 4.43 2

Table 3. Decision analysis results under sampling uncertainty at a 95% confidence level.
Scenario Inspect P1 Inspect P2 Inspect Final Disassemble Total Cost Cycles

1 False False False True 30.56 2
2 False False False True 47.59 3
3 False False False True 30.90 2
4 False False False True 42.76 3
5 False False False True 42.32 3
6 False False False False 5.64 2

Table 2. Model results across different risk scenarios.
Metric Scenario 1: Baseline Scenario 2: High Market Cost Scenario 3: High Defect Rate

Total Cost 36.21 39.67 52.49
Total Cycles 2 2 3
Part Inspection Decisions [0, 1, 1, 0, 1, 1, 1, 1] [1, 1, 1, 1, 1, 1, 1, 1] [1, 1, 1, 1, 1, 1, 1, 1]

APPLIED OPERATIONS AND ANALYTICS 11
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4.4. Validation of the optimization approach

To ensure the credibility of our findings, we conducted a comprehensive set of experiments to validate the 
performance of the Genetic Algorithm (GA).

4.4.1. Performance against optimal solutions
We benchmarked the GA against the true optimal solutions obtained from an exact Markov Decision 
Process (MDP) solver on small-scale instances. As shown in Table 6, the results confirm the high quality of 
the GA solution. In all tested scenarios, the best solution found by the GA achieved an optimality gap of 
0.00% compared to the global optimum. The average solution quality was also exceptionally high, with the 
mean optimality gap never exceeding 0.4%. This provides strong quantitative evidence that our GA 
consistently identifies globally optimal or near-optimal solutions for this problem class.

4.4.2. Robustness and convergence analysis
To assess the robustness of our GA, we conducted 50 independent runs. All runs converged to the exact 
same optimal cost, resulting in a standard deviation of zero. Furthermore, the convergence plot (Figure 2 
(c)) confirms that 40 generations are sufficient for the algorithm to reach a stable optimum, validating its 
reliability and efficiency for this problem.

5. Model validation and sensitivity analysis

To assess the robustness and applicability of our framework, we conducted a two-part analysis. 
First, we examined the model’s behavior under more complex assumptions to evaluate its stability. 
Second, we performed a sensitivity analysis to identify key parameters and thresholds that influence 
the optimal strategy. The analysis plots (e.g., Figure 6) were generated using a grid search, where 
a given cost multiplier was varied over a specified range at discrete intervals. At each point, the 
model was run to determine the optimal strategy and total cost, with the results aggregated to 
visualize strategic shifts.

5.1. Analysis of model robustness and behavior

To test the framework’s behavior under conditions that more closely resemble operational scenarios, we 
enhanced the model to include inspection side effects, such as indirect costs and the potential for inspec
tions to introduce new defects. The results suggest the stability of our core findings. Under these more 
stringent conditions, the selective inspection strategy remained optimal, with the total cost increasing by 
only 0.17% (Table 7). This suggests that the model’s primary conclusions are not highly sensitive to these 
specific simplifying assumptions.

We also examined the model’s behavior across a range of learning rates (α), which represents the 
speed of process improvement. As illustrated in Figure 5 and Table 8, while the total cost decreased 
with faster learning, as expected, the initial first-cycle inspection strategy remained consistent 

Table 6. Performance comparison: ga vs. Optimal MDP solution.
Configuration MDP Optimal Cost GA Mean Cost GA Best Cost Mean Gap (%) Best Gap (%)

Low Defect (p=0.05) 17.57 17.63 17.57 0.36% 0.00%
Medium Defect (p=0.10) 20.14 20.17 20.14 0.14% 0.00%
High Defect (p=0.15) 30.00 30.11 30.00 0.38% 0.00%

Note: GA results are averaged over 50 independent runs. The optimality gap is calculated as ððGACost=MDPCostÞ � 1Þ � 100%.

Table 7. Comparison of baseline and enhanced models with inspection side effects.
Model Type Total Cost Cycles Indirect Cost Defects Introduced

Baseline (β ¼ 0; pnew ¼ 0) 36.21 2 0.00 0
Enhanced (β ¼ 0:2; pnew ¼ 0:01) 36.27 2 4.80 0
Increase +0.06 – – –
Percentage +0.17% – – –

Note: Bold values highlight the cost increase in the enhanced model compared to the baseline.
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across the tested scenarios. This suggests that the initial strategy is primarily driven by the under
lying cost structure rather than being highly sensitive to the exact rate of future process 
improvement.

5.2. Sensitivity analysis of strategic thresholds

This analysis identifies key thresholds that can inform strategic choices, providing insight into how the 
optimal policy responds to changes in the economic and quality environment.

5.2.1. Internal cost thresholds and operational tactics
Our analysis identifies a cost boundary for upstream quality control. As shown in Figure 6(a), while various 
selective inspection strategies may be optimal at low costs, a notable threshold appears when the component 
inspection cost rises above 87% of its baseline value. Beyond this point, the optimal strategy shifts to 
forgoing upstream checks entirely (Table 9). This threshold offers a quantitative benchmark for evaluating 
the economic viability of new inspection technologies relative to their expected failure prevention value.

The model also provides a quantitative analysis of the trade-off between salvaging and scrapping 
components, a central consideration in the circular economy. We identified a threshold where, if the cost 
to disassemble a defective final product exceeds 9.6 times its sunk production cost, the optimal policy shifts 
from disassembly and recovery to scrapping (Table 10 and Figure 6(b)). This point offers a financial basis 
for assessing when material recovery may no longer be economically sustainable.

5.2.2. External risk thresholds and strategic orientation
We identified an external risk threshold that suggests a potential shift from a cost-minimization focus to 
a more risk-averse posture. As shown in Figure 7(a), when the cost of a market failure reaches 1.5 times the 
product’s assembly cost, the optimal strategy shifts from selective inspection to a more conservative, 

Table 8. Learning rate sensitivity analysis results.
α Total Cost Cycles First-Cycle Strategy Avg. Parts Inspected per Cycle

0.10 206.09 10 P:01101111 H:000 F:1 5.8
0.20 147.32 10 P:01101111 H:000 F:1 3.3
0.35 80.16 5 P:01101111 H:000 F:1 3.6
0.50 52.00 3 P:01101111 H:000 F:1 4.0
0.60 48.26 3 P:01101111 H:000 F:1 4.0

Note: The bolded row indicates the result for the baseline learning rate (α = 0.35) used in our primary analysis.

Table 9. Key points in sensitivity analysis for component inspection cost. Strategy is 
represented as (p: [component decisions] h: [semi-finished decisions] F: [final pro
duct decision]).

Multiplier Parameter Value Total Cost Strategy (P:H:F)

0.100 Base * 0.10 17.26 P:11111111 H:000 F:1
0.616 Base * 0.62 23.21 P:01001010 H:000 F:1
0.874 Base * 0.87 23.76 P:00000000 H:000 F:1
5.000 Base * 5.00 23.76 P:00000000 H:000 F:1

Note: The bold value indicates the critical cost threshold at which the optimal strategy shifts to 
forgoing all upstream inspections.

Table 10. Key points in sensitivity analysis for final product disassembly cost. 
Strategy is represented as (p: [component decisions] h: [semi-finished decisions] F: 
[final product decision]).

Multiplier Parameter Value Total Cost Strategy (P:H:F)

0.100 Base * 0.10 22.86 P:00000000 H:000 F:1
9.521 Base * 9.52 32.28 P:00000000 H:000 F:1
10.017 Base * 10.02 32.36 P:00000000 H:000 F:1
12.000 Base * 12.00 32.36 P:00000000 H:000 F:1

Note: The bold value indicates the cost threshold beyond which the optimal disassembly strategy 
stabilizes.
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comprehensive upstream inspection (Table 11). This “1.5x” multiplier illustrates how potential downstream 
consequences can justify a greater emphasis on upstream prevention over immediate cost savings.

Furthermore, the framework identifies a quality threshold for managing supplier performance. A distinct 
shift in strategy was observed when the initial defect rate of incoming components reaches 12.5%. At this 
point, the optimal strategy moves from selective sampling to a 100% inspection policy (Table 12 and 
Figure 7(b)). This 12.5% threshold can provide the procurement department with a data-driven basis for 
discussions on supplier quality requirements or for justifying the internal costs of screening components 
from lower-performing suppliers.

6. Discussion

Our research provides a comprehensive framework for adaptive decision-making in multi-stage produc
tion, with findings that carry significant implications for both theory and practice. This discussion is 
structured to first interpret the principal findings and their managerial relevance, then position the frame
work within the broader academic and industrial context, and finally, acknowledge its limitations while 
outlining future research directions.

6.1. Principal findings and managerial implications

This study offers a nuanced perspective on the traditional quality maxim to “catch defects as early 
as possible” (Patrick Eigbe et al., 2010). Our framework suggests that the optimal inspection 
strategy is context-dependent. The results indicate that under specific, quantifiable economic 
conditions, an approach focused on end-of-line verification can be more cost-effective. This finding 
does not refute traditional wisdom but rather helps to define its boundary conditions. The 
proposed adaptive policy is intended to support a shift from fixed rules to more dynamic, risk- 
based strategies. A notable aspect of this work is the identification of quantitative thresholds. For 
instance, our sensitivity analysis identified thresholds for market failure cost (1.5x assembly cost) 
and initial defect rates (12.5%) that correspond to a shift in the recommended strategy, from 
selective inspection to more comprehensive prevention. These data-driven thresholds may provide 
managers with signals for when to adjust their quality control posture in response to changing 
internal or external risks.

Furthermore, our results offer a clear quantification of the strategic value of information. By demon
strating that higher data accuracy (a 95% vs. 90% confidence level) leads to more stable decision-making and 
lower long-term costs, we provide a tangible return-on-investment argument for corporate investment in 
advanced quality data systems. In the era of Quality 4.0, this finding underscores that data is not merely an 
operational byproduct but a strategic asset that enhances system resilience and economic performance.

Table 11. Key points in sensitivity analysis of market failure cost (Cmarket)
Multiplier Total Cost Strategy (First Cycle) Full Upstream Inspection

1.00 36.21 P:01101111 H:000 F:1 False
1.50 37.81 P:11111111 H:000 F:1 True
15.00 39.52 P:11111111 H:000 F:1 True

Note: A strategic shift is observed when the multiplier reaches 1.50.

Table 12. Key points in sensitivity analysis of initial defect rate (pinitial)
Initial Defect Rate Total Cost Strategy (First Cycle) Full Upstream Inspection

0.050 27.99 P:01101111 H:000 F:1 False
0.100 36.21 P:01101111 H:000 F:1 False
0.125 42.50 P:11111111 H:000 F:1 True
0.400 54.92 P:11111111 H:000 F:1 True

Note: A strategic shift is observed when the initial defect rate reaches 12.5%.
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6.2. Positioning the framework in the context of industry 4.0 and sustainability

Methodologically, our framework fills a gap between oversimplified traditional models and computationally 
intractable exact methods. Static approaches like SPC fail to capture the systemic interdependencies and 
dynamic nature of modern production. Conversely, while theoretically powerful, exact optimization 
methods like MDPs become computationally infeasible for realistically scaled problems. Our integrated 
framework, analyzed using a validated Genetic Algorithm, provides a scalable and robust approach that 
integrates production dynamics, the economic trade-offs of reverse logistics, and sampling uncertainty.

The implications of this research extend beyond cost optimization into the strategic domains of Industry 
4.0 and sustainable manufacturing. The framework serves as a practical implementation of Quality 4.0, 
leveraging data to create an intelligent, self-adapting quality system that moves beyond localized, reactive 
problem-solving to proactive, system-wide optimization.

Moreover, by explicitly modeling the decision between scrapping a defective unit and disassembling it for 
component salvage, our model directly addresses the principles of the circular economy (Arruda et al., 2021; 
Geissdoerfer et al., 2017; Merli et al., 2018; Oliveira et al., 2021). The finding that disassembly is often the 
economically optimal choice demonstrates a powerful synergy between financial cost minimization and 
material waste reduction. The sensitivity analysis further identifies the precise economic threshold where 
this synergy breaks down, providing managers with a data-driven tool to balance economic viability with 
sustainability objectives.

6.3. Limitations and future research

Despite its contributions, this study has several limitations that open avenues for future research. First, our 
model simplifies the reverse logistics choice to a disassembly/scrap dichotomy, omitting the common 
industrial practice of repairing the final product (Bernon et al., 2018; Fleischmann et al., 2001; Rubio & 
Jiménez-Parra, 2014), which presents a different cost-benefit structure. Second, the learning rate in our 
model, while effective, is an aggregate parameter; it does not explicitly capture how the diagnostic 
information from intermediate inspections can accelerate root cause analysis and thus process 
improvement.

Future research could advance this work in several promising directions. One key area is the 
integration of real-time Internet of Things (IoT) data (Farooq et al., 2023; F. Qiu et al., 2025; Soori 
et al., 2023; Yang et al., 2019). This would allow the model to dynamically update its parameters based 
on live sensor readings rather than batch-level sampling, enabling a more granular and responsive 
control strategy. Another promising avenue is the development of hybrid Genetic Algorithm-Machine 
Learning (GA-ML) models (Kausik et al., 2025; Melin & Castillo, 2007; Yin et al., 2018; Zhang et al.,  
2024). Such a model could use ML to predict complex, non-stationary defect patterns, providing the GA 
with more accurate inputs and thereby enhancing the quality and foresight of its strategic decisions. 
Integrating these advanced techniques would further strengthen the framework’s applicability in com
plex, real-world manufacturing environments.

6.4. Qualitative validation with industry professionals

6.4.1. Methodology
The validation followed a structured qualitative methodology. We used semi-structured interviews for data 
collection, guided by a predefined set of questions based on our model’s core themes: (1) the trade-off 
between upstream inspection and downstream recovery, (2) the influence of cost and risk drivers on 
strategy, and (3) the utility of quantitative decision-support tools. This approach ensured consistent topic 
coverage while allowing flexibility to explore participants’ specific contexts. We interviewed four senior 
quality and operations managers from three firms in the electronics assembly sector. Participants were 
selected for their relevant backgrounds, with the cohort having an average of over four years of industry 
experience. Interviews were anonymized, and the transcripts were analyzed using thematic coding to 
systematically identify recurring themes.
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6.4.2. Key findings and alignment with model
The interview findings are consistent with the principles of our framework. First, all participants 
confirmed the central trade-off between inspection costs and downstream failure risks, describing it as 
a constant operational challenge. This supports the relevance of our model’s primary research 
question. Furthermore, a recurring theme was “organizational inertia”, where legacy inspection points 
often remain due to historical precedent rather than current data. One director noted, “no one wants 
to be the one to sign off on removing it”, highlighting how a quantitative framework could provide 
objective data to re-evaluate such practices. The practitioners also confirmed that their strategies 
adapt to risk; for high-consequence products, the policy shifts toward comprehensive upstream 
inspection, a dynamic analogous to the strategic “tipping point” identified by our model 
(Section 5.2.2). Finally, participants saw potential value in a decision-support tool that could quantify 
these trade-offs, agreeing it could help make their quality management more proactive and data- 
informed, in line with Quality 4.0 objectives. In summary, this validation suggests that our framework 
captures key dynamics of real-world quality decisions and has practical relevance as a decision- 
support tool.

7. Conclusion

This research addresses the challenge of applying a single, static quality control strategy in multi-stage 
production by developing a framework to help identify cost-effective, adaptive strategies for a given 
operational context. This paper contributes an optimization framework that integrates production 
dynamics, reverse logistics, and sampling uncertainty. The results show that the model’s recommended 
policy adapts to risk, and the analysis identifies financial and quality thresholds that indicate when 
a strategic shift from selective checks to comprehensive prevention may be warranted. This work can be 
viewed as an application of Quality 4.0 principles, illustrating a method by which system resilience and 
cost efficiency may be improved through data-informed decision-making. By favoring component 
salvage where economically viable, the model also aligns with sustainability goals. Ultimately, this 
research provides a framework to help managers analyze the trade-offs between cost and quality, 
with the goal of contributing to the development of more resilient and sustainable manufacturing 
systems.
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