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Simple Summary

Discovering new medicines is a slow, expensive, and often unsuccessful process. A new
type of Artificial Intelligence (AI), known as diffusion models, shows great promise in
changing this by designing entirely new drugs on a computer. This review examines how
this technology is used to create two major types of medicines: small molecules, which are
common in pills, and larger therapeutic peptides. For small molecules, the main challenge
for the AI is to design drugs that can actually be created in a chemistry lab. For peptides,
the focus is on designing molecules that are stable in the human body, fold into the correct
shape to work properly, and do not cause an unwanted immune reaction. Both areas face
common hurdles, such as the need for more real-world experimental data to train the AI
and more reliable AI evaluation methods to predict a drug’s success. The ultimate goal is
to connect these powerful AI design tools with automated robotic labs. This would create a
rapid cycle of designing, building, and testing new medicines, transforming drug discovery
from a process of slow exploration to one of creating novel, targeted therapies on demand.

Abstract

Diffusion models have emerged as a leading framework in generative modeling, poised
to transform the traditionally slow and costly process of drug discovery. This review pro-
vides a systematic comparison of their application in designing two principal therapeutic
modalities: small molecules and therapeutic peptides. We dissect how the unified frame-
work of iterative denoising is adapted to the distinct molecular representations, chemical
spaces, and design objectives of each modality. For small molecules, these models excel at
structure-based design, generating novel, pocket-fitting ligands with desired physicochemi-
cal properties, yet face the critical hurdle of ensuring chemical synthesizability. Conversely,
for therapeutic peptides, the focus shifts to generating functional sequences and designing
de novo structures, where the primary challenges are achieving biological stability against
proteolysis, ensuring proper folding, and minimizing immunogenicity. Despite these
distinct challenges, both domains face shared hurdles: the scarcity of high-quality experi-
mental data, the reliance on inaccurate scoring functions for validation, and the crucial need
for experimental validation. We conclude that the full potential of diffusion models will be
unlocked by bridging these modality-specific gaps and integrating them into automated,
closed-loop Design-Build-Test-Learn (DBTL) platforms, thereby shifting the paradigm from
mere chemical exploration to the on-demand engineering of novel therapeutics.

Biology 2025, 14, 1665 https://doi.org/10.3390/biology14121665

https://doi.org/10.3390/biology14121665
https://doi.org/10.3390/biology14121665
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biology
https://www.mdpi.com
https://orcid.org/0000-0003-1417-5752
https://orcid.org/0009-0004-7443-5645
https://orcid.org/0009-0000-3272-4271
https://orcid.org/0009-0003-6524-3249
https://orcid.org/0009-0007-7151-8068
https://orcid.org/0000-0001-5431-8290
https://doi.org/10.3390/biology14121665
https://www.mdpi.com/article/10.3390/biology14121665?type=check_update&version=2


Biology 2025, 14, 1665 2 of 26

Keywords: diffusion models; drug discovery; de novo design; small molecules; therapeutic
peptides

1. Introduction
1.1. The Bottleneck of Drug Discovery and the Rise of Generative AI

Traditional drug discovery pipelines, reliant on high-throughput screening, which in-
volves the automated testing of large numbers of compounds, and combinatorial chemistry,
a method for rapidly creating vast libraries of molecules, are characterized by prolonged
development timelines, high attrition rates, and enormous costs. The entire process from
target identification to market approval typically spans 10–15 years [1], with the clinical de-
velopment phase alone requiring a median of 8.3 years [2]. Despite decades of optimization,
clinical success rates remain discouragingly low, with only approximately 7.9% of drug
candidates entering Phase I trials ultimately receiving regulatory approval [3], though these
rates vary significantly across therapeutic areas and have shown dynamic fluctuations
throughout the 21st century [4–6]. Recent advances in cell and gene therapies have demon-
strated distinct success rate profiles, offering new prospects for durable treatments [7].
The financial burden is staggering: while historical estimates reached $2.6 billion per ap-
proved drug [8], more recent analyses suggest mean development costs of approximately
$879 million based on 2000–2018 data [9], though costs continue to escalate with increas-
ingly complex trial designs and regulatory requirements as evidenced by record-breaking
FDA approval trends [10].

The vast chemical space, estimated to contain 1060 drug-like molecules [11,12], remains
largely unexplored through conventional screening approaches. This estimation, originally
derived from molecules up to 30 heavy atoms constructed from organic elements [11], has
been supported by systematic enumeration studies such as the GDB-17 database containing
166 billion molecules [13,14] and recent explorations of peptide/peptoid chemical space [12].
More conservative estimates suggest approximately 1033 molecules strictly adhering to
Lipinski’s rule of five, a set of physicochemical guidelines used to predict a compound’s
potential for oral bioavailability [15], yet even this reduced scope represents a vast and
largely unsampled space. Generative Artificial Intelligence (AI) offers a paradigm shift,
moving from merely screening existing compounds to creating entirely novel molecules
tailored to specific needs. This promise is not merely theoretical; the broader field of
generative AI has already begun to deliver tangible results, with dozens of AI-designed
small molecules advancing into human clinical trials and demonstrating the potential
to significantly shorten discovery timelines and improve success rates [16–18]. Early
generative models like Variational Autoencoders (VAEs) [19], Generative Adversarial
Networks (GANs) [20], and Flow-based models [21–23] laid the groundwork but faced
limitations in generation quality, training stability, and mode collapse issues. VAEs often
produced blurry outputs due to the trade-off between reconstruction and latent loss, while
GANs were susceptible to training instability and mode collapse, challenges extensively
reviewed in the literature focused on adversarial networks [24]. Flow-based models, in turn,
encountered computational efficiency limitations. The distinct trade-offs in performance,
stability, and computational cost across these generative families have been systematically
compared in several surveys [25,26].

1.2. The Emergence of Diffusion Models

Diffusion models have recently emerged as a highly successful framework in gen-
erative modeling, demonstrating competitive and robust capabilities in generating high-
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quality, diverse samples compared to previous approaches [27]. Their core idea involves a
two-step process: a forward diffusion process that incrementally adds Gaussian noise to
data according to a predefined variance schedule until it becomes pure noise, and a reverse
denoising process where a trained neural network learns to iteratively denoise samples,
effectively generating new data from random noise [27,28].

The success of diffusion models extends far beyond a single domain. They have
achieved revolutionary breakthroughs in fields like computer vision (e.g., DALL-E 2, Stable
Diffusion), audio synthesis, and natural language processing [29–32], proving an excep-
tional ability to learn and generate high-quality samples from complex, high-dimensional
data. This cross-domain success underscores the framework’s inherent flexibility, which
makes it particularly attractive for molecular design, where data is inherently multi-
modal—encompassing continuous 3D coordinates, discrete atom types, graph structures,
and sequential patterns. Moreover, key techniques pioneered for image generation, such
as classifier-free guidance [33] for precise control and latent diffusion [30] for computa-
tional efficiency, have been successfully adapted to molecular design challenges [34,35].
This powerful combination of generative fidelity and adaptability provides a strong foun-
dation for using diffusion models to create diverse, valid, and novel therapeutics with
desired properties.

1.3. Scope and Structure of This Review

This review focuses specifically on the recent surge of diffusion models in drug
discovery, primarily drawing from the rapidly evolving literature. For the first time, we
systematically compare the application, challenges, and future prospects of this technology
in designing two critical drug modalities: small molecules and therapeutic peptides. These
modalities were chosen for their immense clinical and commercial importance and their
complementary strengths and weaknesses, which create distinct design challenges perfect
for a comparative analysis.

Small molecules constitute a substantial portion of approved drugs. Recent FDA
approval data from 2023 to 2024 indicate that small molecule drugs (new molecular enti-
ties, NMEs) accounted for approximately 55–69% of novel therapeutic approvals [36–39].
In 2023, the FDA approved 55 new medications consisting of 17 biologics license ap-
plications and 38 NMEs, with small molecules representing approximately 55% of total
approvals [36]. This approval trend continued in 2024, with 50 NMEs approved, further
demonstrating the continued importance of small molecule drugs in modern therapeu-
tics [37]. Small molecules typically have molecular weights below 900 Da, are orally
bioavailable, can penetrate cells to target intracellular proteins, and are relatively cost-
effective to manufacture. They have been successfully applied to a wide range of diseases,
from infectious diseases (antibiotics, antivirals) to chronic conditions (cardiovascular drugs,
diabetes medications) to cancer (kinase inhibitors, chemotherapeutics). However, small
molecules face significant limitations in targeting certain “undruggable” proteins—targets
historically considered intractable for small-molecule intervention due to features like
lacking well-defined binding pockets or those involving protein-protein interactions with
large, flat interfaces [40–42]. These challenging targets have spurred interest in alternative
modalities and advanced drug design approaches.

Therapeutic peptides, by contrast, represent a rapidly growing class of drugs, with over
80 peptide drugs currently approved and more than 150 in clinical development [43].
The peptide therapeutics field has experienced remarkable growth, driven by advances
in peptide chemistry, delivery technologies, and the clinical success of peptide-based
therapeutics such as GLP-1 receptor agonists for diabetes and obesity [43]. Peptides offer
several advantages: high specificity and potency (often binding targets with nanomolar to
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picomolar affinities), low toxicity (due to degradation into natural amino acids), and the
ability to target protein-protein interactions and extracellular targets that are challenging
for small molecules [41,43]. These characteristics make peptides particularly valuable for
addressing targets previously considered "undruggable" by traditional small molecule
approaches [40]. However, peptides face significant biological hurdles, such as poor
metabolic stability and potential immunogenicity, which limit their therapeutic application
and necessitate specialized design considerations [43–47]. These complementary strengths
and weaknesses make small molecules and peptides ideal for comparative analysis in the
context of AI-driven design.

This review is organized to first introduce the unified framework of diffusion models
for molecular generation (Section 2). We then dedicate separate sections to their application
in designing small molecules (Section 3) and therapeutic peptides (Section 4), highlighting
representative models, performance benchmarks, and domain-specific challenges. Finally,
drawing these threads together, we provide a comprehensive head-to-head comparison,
discuss the shared hurdles that transcend modality, and outline future research directions
toward a fully integrated, closed-loop discovery paradigm (Section 5).

2. The Core Engine: Diffusion Models for Molecular Generation
2.1. Representing Molecules for Diffusion

The choice of molecular representation is fundamental to the design of the diffusion
process, as it dictates both the mathematical formulation of the noise process and the archi-
tecture of the denoising network [48,49]. For small molecules, representations primarily fall
into two categories. One approach utilizes graph-based representations, where molecules
are encoded as graphs with atoms as nodes and bonds as edges [50–52], allowing diffu-
sion to operate on features like discrete atom types or continuous latent embeddings [49].
An alternative and increasingly prevalent approach employs 3D coordinate-based represen-
tations, treating molecules as point clouds of atomic positions in Euclidean space [53–55].
This latter representation is particularly suited for structure-based drug design, as it natu-
rally captures spatial relationships critical for protein-ligand interactions and necessitates
the use of E(3) equivariant neural networks, architectures designed to respect the nat-
ural rotational and translational symmetries of 3D molecules, to handle rotational and
translational symmetries [56–60].

In contrast, the representation of peptides is shaped by their polymeric nature.
The most straightforward method is sequence-based, encoding peptides as discrete
sequences of amino acid tokens, which requires specialized discrete diffusion pro-
cesses [61–64]. Complementing this, structure-based representations capture the pep-
tide’s three-dimensional conformation through the coordinates of backbone and side-chain
atoms [65,66], or alternatively, through internal coordinates like torsion angles that inher-
ently respect geometric constraints [67]. These distinct representational paradigms for
small molecules and peptides shape the subsequent design of the diffusion models and the
type of conditioning information that can be effectively integrated [68,69].

2.2. The Mathematics of Diffusion: Forward and Reverse Processes

The diffusion process consists of two Markov chains [27,28]. The forward process
gradually corrupts data x0 by adding Gaussian noise over T timesteps: q(xt|xt−1) =

N (xt;
√

1 − βtxt−1, βt I), where βt is a variance schedule. A key property is that we can sam-
ple xt directly from x0: q(xt|x0) = N (xt;

√
ᾱtx0, (1 − ᾱt)I), where ᾱt = ∏t

s=1(1 − βs) [27].
Here, βt is a small constant from a predefined variance schedule, controlling the amount of
noise added at each step. By defining αt = 1 − βt, the term ᾱt = ∏t

s=1 αs becomes a cumu-
lative product that governs how much of the original signal x0 is preserved at timestep t.
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As t increases, ᾱt decreases towards zero, signifying that the signal progressively fades into
noise. Thus, ᾱt can be intuitively understood as a measure of the signal-to-noise ratio at any
given step. The reverse process learns to denoise: pθ(xt−1|xt) = N (xt−1; µθ(xt, t), Σθ(xt, t)).
The model is trained to predict either the noise ϵ added at each step or the denoised data
x0, by minimizing a variational lower bound on the log-likelihood [27,28]. For molecular
generation, this framework is adapted to handle both continuous (coordinates) and discrete
(atom/bond types, amino acid sequences) variables [64,70,71], often requiring specialized
noise processes and network architectures.

2.3. Conditional Generation: From Noise to Purpose

Unconditional generation has limited utility in drug design. The key is conditional
generation, which steers the generative process toward specific objectives by injecting infor-
mation—such as a target protein’s binding pocket geometry or desired physicochemical
properties—into the denoising network at each timestep. Early approaches relied on clas-
sifier guidance, which uses a separately trained classifier to steer sampling by adding its
gradient to the score function [72]. However, a more recent and popular strategy is classifier-
free guidance, which elegantly avoids the need for a separate model by training a single
conditional network that can operate both with and without conditioning information,
allowing guidance strength to be tuned at inference time [33]. Another powerful technique,
particularly for structure-based tasks, involves integrating conditioning information via
cross-attention mechanisms within the denoising network, enabling the model to dynam-
ically attend to relevant features of the conditioning input at each generation step [73].
These techniques provide precise control over the generation process, making them highly
suitable for the multi-objective optimization challenges inherent in drug design [35,68].

2.4. Comparison with Other Generative Approaches

To appreciate the advantages of diffusion models, it is instructive to compare them
with the generative paradigms that were foundational and previously represented the state-
of-the-art in drug design, such as Variational Autoencoders (VAEs), Generative Adversarial
Networks (GANs), Flow-based models, and Autoregressive models. This comparison
primarily focuses on the overarching generative framework rather than the underlying
neural network architecture, as implementations of these paradigms often share powerful
backbones like Graph Neural Networks (GNNs) or Transformers. The key distinctions,
therefore, lie in their training objectives and generation mechanisms. For example, VAEs
like the Junction Tree VAE [74] learn a continuous latent space but often struggle with
posterior collapse and may generate chemically invalid structures [75–77]. Similarly, GANs
like MolGAN [78] can produce diverse molecules but are notoriously difficult to train [79],
frequently suffering from mode collapse and instability [80,81]. Flow-based models such
as MoFlow [82], constrained by their invertible architecture, can lack expressiveness for
complex molecular graphs [83,84]. Autoregressive models like GraphAF [85] can be slow
and suffer from error propagation, where an early mistake compromises the entire struc-
ture [35,86–90].

In contrast, diffusion models circumvent many of these issues, which explains their
recent ascendancy. Their training is stable and guided by a well-defined denoising objective,
avoiding the adversarial instabilities of GANs while consistently producing samples of high
quality and diversity [35,91–96]. Their framework is remarkably flexible, accommodating
both continuous data like 3D coordinates and discrete data like atom types through tailored
noise processes [48,70,97]. This adaptability, combined with powerful conditioning tech-
niques like classifier-free guidance [33,98,99], allows for precise control over the iterative
refinement process, leading to better global coherence and making them uniquely suited
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for the multifaceted challenges of molecular design. This entire process, from the core
diffusion engine to its specific applications in designing small molecules and therapeutic
peptides, is conceptually illustrated in Figure 1.

Figure 1. A unified framework for de novo drug design using a conditional diffusion model. (a) The
core engine is a conditional diffusion model, which comprises two processes. The noising process
systematically corrupts a data structure, such as a protein (X0), into Gaussian noise (XT) over discrete
timesteps. The generative process learns the reverse, creating novel structures by iteratively denoising
from noise, guided by specific conditions. (b) For de novo small molecule design, the model generates
molecular graphs or 3D coordinates conditioned on a target’s binding pocket and desired properties
(e.g., high activity, low toxicity) to produce diverse, pocket-fitting ligands. (c) For de novo therapeutic
peptide design, the model generates peptide sequences and their corresponding 3D structures,
conditioned on a target protein’s surface, to design novel binders.

These distinct generative mechanisms also lead to different trade-offs in computational
cost, scalability, and interpretability. While frameworks like VAEs and GANs typically
employ their backbone in a single-pass, feed-forward manner for generation, diffusion
models operate iteratively, requiring hundreds or thousands of denoising steps. This itera-
tive paradigm makes them more computationally intensive at inference time. Although the
scalability of any single denoising step is governed by the underlying backbone (e.g., GNN
or Transformer), the total generation cost is this value multiplied by the number of itera-
tions. This computational overhead, however, is often offset by superior training stability,
as diffusion models circumvent the notorious convergence issues and mode collapse that
plague GANs. From an interpretability perspective, all these deep generative models face
the ’black box’ challenge. Nevertheless, the step-by-step refinement process of diffusion
models may offer unique, albeit still nascent, opportunities for mechanistic insight by
allowing observation of the generative trajectory, though deciphering the rationale at each
step remains an active area of research [27,33,35,79].

3. Application I: De Novo Design of Small Molecules
3.1. Datasets and Benchmarks for Small Molecule Generation

The development and evaluation of diffusion models for small molecule design rely
heavily on large-scale, high-quality datasets. The most widely used benchmark is Cross-
Docked2020 [100], a dataset containing approximately 22.5 million docked poses from over
100,000 protein-ligand complexes derived from the PDB (Protein Data Bank) through a sys-
tematic docking procedure [101]. Each complex includes the 3D coordinates of the protein
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binding pocket (typically defined as residues within 6–10 Å of the ligand) and the bound
ligand, along with docking scores as a proxy for binding affinity. CrossDocked2020 has be-
come the de facto standard for evaluating structure-based drug design models [48,102,103],
enabling direct comparison across different approaches including diffusion-based meth-
ods [35] and other generative AI techniques [104]. However, it has several acknowledged
limitations: the docking scores are computational estimates rather than experimental mea-
surements, the dataset is biased toward certain protein families (kinases and proteases
are over-represented), and the ligands are primarily known drugs or drug-like molecules,
limiting chemical diversity. These limitations have motivated ongoing efforts to develop
more diverse and experimentally validated benchmarks for the field.

For property-based generation and conformer generation tasks, the GEOM-Drugs
dataset [105] is commonly used, containing approximately 430,000 drug-like molecules
with pre-computed 3D conformers generated using RDKit [106] and optimized with semi-
empirical quantum chemistry methods. This dataset enables training of models that
learn the distribution of molecular geometries and can generate diverse, low-energy con-
formers [53,107,108]. The ZINC database [109], containing over 230 million purchasable
compounds, is often used for pre-training or as a source of negative examples. The QM9
dataset [110], containing approximately 134,000 small organic molecules with quantum chem-
ical properties computed at the DFT level, is used for benchmarking models on property
prediction tasks, though its molecules are smaller and simpler than typical drug candidates.

A critical limitation across all datasets is the scarcity of experimentally validated
binding affinity data [111–113]. While databases like BindingDB [114] and ChEMBL [115]
contain millions of bioactivity measurements, only a small fraction include high-resolution
3D structures of protein-ligand complexes. Beyond scarcity, the quality and heterogene-
ity of this data present a fundamental challenge to model reproducibility. Bioactivity
measurements (e.g., Ki, Kd, IC50) are often aggregated from diverse assays with varying
experimental conditions, introducing significant noise and inconsistencies. This lack of
standardized data curation and reporting protocols directly undermines a model’s ability
to learn robust structure-activity relationships, thereby compromising its generalization
capabilities. Consequently, establishing rigorous data management standards is as critical
as developing new algorithms for building truly predictive and reproducible generative
models. This data challenge further motivates the development of transfer learning and
semi-supervised approaches [116–120] that can leverage large unlabeled datasets while
being robust to label noise.

3.2. Structure-Based Drug Design (SBDD)

The central task in SBDD is to generate molecules that are geometrically and chemically
complementary to a given protein binding pocket, maximizing binding affinity while
maintaining drug-like properties. Diffusion models have shown remarkable success in this
domain by learning to generate molecules directly in the 3D space of the binding pocket.

Pocket2Mol [121], one of the pioneering works in 2022, employs a two-stage approach:
first generating molecular scaffolds as a set of 3D points, then predicting atom and bond
types for these points. The model is conditioned on pocket atom coordinates and features
through a cross-attention mechanism, achieving 68.4% pose selection accuracy on the
CrossDocked2020 benchmark. The model generates molecules with high validity (>95%)
and uniqueness (>90%), demonstrating the capability of diffusion models to produce
chemically valid structures.

DiffSBDD [103] introduces an SE(3)-equivariant graph neural network architecture
that jointly diffuses over atomic coordinates and discrete atom types. By incorporating
pocket information through a joint graph representation of the pocket and the growing
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molecule, DiffSBDD achieves superior performance in generating molecules with favor-
able predicted binding affinities. On the CrossDocked2020 dataset, DiffSBDD generates
molecules with a median Vina score of −7.5 kcal/mol. This score serves as a computational
estimate of binding affinity, where more negative values indicate a stronger predicted
interaction, and this performance outperforms previous autoregressive and VAE-based
approaches. Importantly, the model demonstrates the ability to generate molecules that
form key interactions (hydrogen bonds, hydrophobic contacts) with critical pocket residues,
as validated through molecular dynamics simulations.

TargetDiff [48,59] further advances the field by introducing a target-aware diffusion
process that explicitly models the protein-ligand interaction energy during generation.
By incorporating a learned energy function that estimates binding affinity, TargetDiff demon-
strates improved performance in generating high-affinity binders while maintaining molecu-
lar diversity across different regions of chemical space with strong pocket complementarity.

Building upon these foundational approaches, recent work has explored dual diffusion
frameworks and pharmacophore-oriented generation. Huang et al. [73] introduced a dual
diffusion model that enables both de novo 3D molecule generation and lead optimiza-
tion, providing a unified framework for structure-based drug discovery. More recently,
pharmacophore-oriented approaches [122] have emerged to incorporate explicit constraints
on the pharmacophore—the essential three-dimensional arrangement of molecular fea-
tures required for biological activity—during the diffusion process, enabling more efficient
feature-customized drug discovery by directly controlling key molecular properties and
interaction patterns.

A primary challenge that remains is the precise modeling of key molecular interactions,
such as hydrogen bonds, salt bridges, and π-π stacking [123]. Furthermore, systematic
benchmarks reveal persistent challenges in achieving accurate 3D spatial modeling, as many
generated structures show significant deviations from energy-minimized references, es-
pecially for larger molecules [124]. While current models can generate molecules that
occupy the binding pocket, ensuring that specific pharmacophoric features are correctly
positioned to form critical interactions with the protein remains difficult. Additionally,
the generated molecules often require post-processing steps, such as bond order correction
and protonation state assignment, to ensure chemical validity [125].

3.3. Property-Based Ligand Design and Optimization

This area focuses on generating molecules that satisfy multiple objectives simulta-
neously, such as high binding affinity, favorable drug-likeness measured by metrics like
the Quantitative Estimate of Drug-likeness (QED) [126], where values closer to 1 suggest
a better drug-like profile, appropriate lipophilicity (logP), low toxicity, high membrane
permeability, and synthetic accessibility (SA). To achieve this multi-objective optimization,
several property-guided generation approaches have been developed. Conditional diffu-
sion models, for example, are trained to generate molecules with specific property values by
directly conditioning on target property vectors [48]. These models can produce molecules
with specified molecular weight, logP, and hydrogen bond donor/acceptor counts with
reasonable accuracy [48]. Alternatively, guidance-based methods employ pre-trained
property predictors to steer the diffusion sampling process at inference time [35,127,128].
By computing the gradients of property predictors with respect to the molecular represen-
tation, these techniques can navigate the chemical space to optimize multiple properties
simultaneously [53].

However, optimizing for multiple, often conflicting, objectives remains a significant
challenge. For instance, increasing lipophilicity (logP) to improve membrane permeability
may concurrently decrease aqueous solubility and heighten toxicity risk. To address this,
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recent work has explored more sophisticated frameworks. Some studies focus on generat-
ing diverse molecules along the Pareto front, providing a set of candidates that represent
different trade-offs between objectives [129]. Other advanced strategies include using rein-
forcement learning to dynamically balance competing goals [130,131] and developing dual
diffusion architectures for simultaneous optimization across multiple design criteria [99].

However, ensuring the synthesizability of the generated molecules remains a major
and persistent challenge in the field. While diffusion models can generate chemically valid
molecules (as determined by valence rules and RDKit sanitization), these molecules may
be synthetically inaccessible or require prohibitively complex synthetic routes. Synthetic
accessibility scores (SA scores [132]) provide a rough estimate [127,131], but they do not
guarantee that a practical synthesis route exists. Recent efforts have focused on incorporat-
ing models for retrosynthesis, a computational technique for planning chemical synthesis
by working backward from the target molecule, into the generation process, either by using
retrosynthesis feasibility as an additional objective [133] or by generating molecules in a
retrosynthetically aware manner, building molecules from commercially available build-
ing blocks through known reaction templates [134,135]. Alternative approaches evaluate
synthesizability by combining retrosynthetic planning with forward reaction prediction
to verify route feasibility [136]. Methods that optimize molecular geometry and struc-
tural stability have also been proposed to improve the practical viability of generated
candidates [53]. Despite these advances, the gap between computational generation and
experimental synthesis remains a critical bottleneck [104,137]—a synthesis barrier that has
been identified as a major challenge limiting the real-world impact of generative AI in
pharmaceutical development [138]. Bridging this gap by integrating generative models
with retrosynthesis prediction and automated experimental validation remains a central
goal for the field [139], a challenge shared across modalities, where the synthetic accessibil-
ity hurdle for small molecules finds its critical counterpart in the biological stability and
production challenges inherent to therapeutic peptides (Section 4).

4. Application II: Innovative Design of Therapeutic Peptides
4.1. Datasets and Benchmarks for Peptide Design

Peptide and protein design models rely on fundamentally different datasets compared
to small molecule models, reflecting the distinct nature of biopolymers. The Protein Data
Bank (PDB) [101], containing over 240,000 experimentally determined protein structures
(as of 2024), serves as the primary source of structural data. For training diffusion models
on protein backbones, high-quality subsets are typically used: the CATH database [140,141]
(containing 601,493 domains from over 150,000 PDB structures, classified by architec-
ture and topology) and the SCOPe database [142,143] (classifying 344,851 domains from
106,976 PDB entries by structural and evolutionary relationships) are commonly used to
ensure structural diversity and avoid redundancy. These datasets enable models to learn
the principles of protein folding—the allowed backbone geometries, secondary structure
propensities, and tertiary packing arrangements.

For sequence-based models, much larger datasets are available. UniProt [144,145],
containing over 246 million protein sequences, provides a vast resource for learning se-
quence patterns and evolutionary relationships. The UniRef50 and UniRef90 datasets [146]
(clustered at 50% and 90% sequence identity, respectively) are commonly used for train-
ing, providing non-redundant reference clusters that enable models to learn amino acid
co-evolution patterns, functional motifs, and sequence-structure relationships. The recent
AlphaFold Database [147,148], containing predicted structures for over 214 million pro-
teins, has dramatically expanded the available structure data, though the quality varies
and experimental validation is limited.
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For specific peptide design tasks, specialized datasets exist. The Antimicrobial Peptide
Database (APD3) contains approximately 3000 experimentally validated antimicrobial
peptides with activity data (MIC values, target organisms) [149]. The Database of Antimi-
crobial Activity and Structure of Peptides (DBAASP) contains over 15,000 entries with
detailed activity annotations [150]. For cell-penetrating peptides, CPPsite contains ap-
proximately 1800 entries [151,152]. However, these specialized datasets are much smaller
than those available for small molecules. Furthermore, they suffer from significant data
heterogeneity, a challenge that directly impacts model reproducibility and the creation of
reliable benchmarks. For instance, antimicrobial activity measured as Minimum Inhibitory
Concentration (MIC) can vary dramatically depending on the bacterial strain and assay
protocol, while cell-penetrating efficiency lacks a universally accepted standard metric.
This inconsistency makes it difficult to harmonize data for training robust, generalizable
predictive models and underscores the critical need for community-wide standards in
peptide bioactivity reporting.

A critical challenge is the scarcity of experimentally validated peptide-protein inter-
action data with structural information. While databases like PDBbind [153,154] contain
thousands of protein-ligand complexes, only a small fraction involve peptide ligands.
The lack of large-scale, high-quality training data for peptide binder design motivates
the use of transfer learning from general protein structure prediction models (e.g., Al-
phaFold2 [155], RoseTTAFold [156]) and the development of physics-informed models that
incorporate biophysical priors.

4.2. Generation of Functional Peptide Sequences

The goal here is to generate amino acid sequences with specific biological func-
tions, such as antimicrobial peptides (AMPs), cell-penetrating peptides (CPPs), or pep-
tides with specific binding properties. This task typically employs discrete diffusion
models [61,157–159], which are adapted to handle the categorical nature of amino acid
data. Pioneering work has demonstrated sequence-only generation without requiring
structural information [61], with recent advances enabling multi-objective optimization for
therapeutic properties [157], length-controlled peptide design [159], and applications in
practical binder design [66,68].

Discrete diffusion models for peptide sequences operate by gradually corrupting
amino acid sequences through a process of random token replacement or masking, then
learning to reverse this process. The foundational work in this area proposed several noise
processes, including uniform transition matrices, absorbing state models, and learned
transition matrices that respect amino acid similarity [64]. The uniform transition approach,
for instance, has been applied in subsequent peptide generation models [61]. The choice
among these noise processes carries significant practical implications for peptide design.
The uniform transition matrix, while the simplest to implement, disregards the inherent
biochemical similarities between amino acids, treating a transition from Alanine to Valine
(both hydrophobic) the same as one to Lysine (hydrophilic). The absorbing state model
is particularly well-suited for tasks like sequence inpainting or constrained generation,
as the MASK token provides a clear demarcation between fixed regions and those to be
generated. Finally, learned transition matrices offer the most sophisticated approach,
allowing the model to incorporate prior knowledge, such as amino acid substitution
matrices (e.g., BLOSUM), which can potentially improve learning efficiency and generate
more biologically plausible intermediate sequences.

Recent studies have demonstrated that deep generative and foundation models can
successfully design antimicrobial peptides (AMPs) with predicted and experimentally vali-
dated activity comparable to, or even exceeding, that of natural AMPs [160–163]. Models are
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typically trained on curated datasets of a few thousand sequences drawn from larger public
databases such as APD3, DBAASP, or DRAMP, which contain up to 22,000 entries [164].
For instance, a recent generative model was trained on a specific set of 3280 MIC-labeled
AMPs [162]. These approaches generate novel sequences with experimentally confirmed
minimum inhibitory concentrations (MICs) in the low-micromolar range against common
pathogens like E. coli and S. aureus; for example, validated MICs ranging from 0.20 to
15.18 µM have been reported [162], with other generative frameworks also confirming
potent hits [160]. Importantly, these generated peptides often exhibit substantial sequence
novelty, with one study reporting a median sequence identity of approximately 35% to any
example in the training set, indicating true de novo design rather than memorization [162].

In peptide design, particularly for antimicrobial peptides (AMPs), diffusion models
have been conditioned using strategies like text guidance or post-generation property
filtering (e.g., net charge, hydrophobicity) [165,166]. The application of similar meth-
ods for cell-penetrating peptides (CPPs), especially by explicit conditioning on predicted
membrane permeability, is an emerging area that could leverage advances in CPP pre-
diction models [167]. Some generated peptides have demonstrated in silico or in vitro
cellular uptake efficiencies comparable to canonical CPPs like TAT under specific assay
conditions [168,169], showcasing the potential to explore novel sequence space. However,
systematic experimental validation remains a significant bottleneck. Recent reviews em-
phasize the persistent gap between computational predictions and functional confirmation,
a key challenge in translating in silico designs into effective therapeutics [170–172].

A key advantage of diffusion models over previous generative approaches (such as
RNNs or VAEs) is their ability to generate highly diverse sequences while maintaining
exceptional validity [61,173–175]. Recent studies report that sequence validity—defined as
the generation of valid amino acid strings of a desired length—consistently achieves near-
perfect rates, typically ≥98–100% [61,173,175]. Simultaneously, these models demonstrate
substantially greater sequence diversity compared to VAE or language model baselines,
producing broader and less redundant libraries that better span natural sequence and
functional spaces [61,173,175]. While sequence-based generation is valuable for designing
peptides with specific functional properties, many therapeutic applications require precise
control over 3D structure and binding geometry. This motivates the development of
structure-guided design approaches, which we explore next.

4.3. Structure-Guided De Novo Peptide Design

A more ambitious goal is to directly generate peptides that fold into specific 3D
structures or bind to target protein surfaces with high affinity and specificity. This includes
not only linear peptides but also larger, structurally defined mini-proteins that function as
peptide mimetics. This task requires modeling both sequence and structure simultaneously,
since the sequence must be compatible with the desired fold and the structure must be
stable and functional [176,177]. Recent deep learning advances, particularly diffusion-based
methods, have made significant progress toward achieving this goal [178,179].

RFdiffusion, a landmark model in this area, has significantly advanced structure-
guided protein and peptide design [65]. Built upon the RoseTTAFold structure prediction
network [156], RFdiffusion performs diffusion directly on protein backbone coordinates
(represented as rigid body transformations of residue frames) while maintaining SE(3)
equivariance [65]. The model can be conditioned on various structural constraints, includ-
ing target protein surfaces for binder design, desired secondary structure motifs (helices,
sheets), or functional site geometries [65].

RFdiffusion has demonstrated remarkable success in designing mini-protein binders,
a breakthrough that directly paves the way for creating structurally defined peptides with
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high efficacy [65]. When tasked with designing binders to challenging protein targets
such as influenza hemagglutinin, for instance, RFdiffusion generates backbones that, af-
ter sequence design using ProteinMPNN [180], achieve experimental binding affinities
in the nanomolar range (e.g., a KD of 28 nM for an influenza binder) in approximately
19% of tested designs [65]. This success rate is substantially higher than previous com-
putational design methods, which typically achieved success rates below 5% [181,182].
The designed binders often exhibit novel folds not present in natural proteins, demon-
strating the model’s ability to explore diverse and novel structural topologies within the
protein fold space [65]. Furthermore, the approach has been successfully extended to
designing high-affinity binders for challenging helical peptide targets, yielding picomolar
to sub-nanomolar affinities [183].

The typical workflow, largely established by the developers of RFdiffusion [65], is
a critical hybrid approach involving two distinct generative stages. First, RFdiffusion (a
diffusion model) is used to generate a peptide backbone (continuous coordinates) that is
geometrically complementary to the target protein surface, with the diffusion process con-
ditioned on the target structure and desired binding interface residues. Second, a sequence
design model such as ProteinMPNN [180] (a GNN-based, non-diffusion model) or ESM-
IF [184] is employed to perform inverse folding, designing an amino acid sequence (discrete
tokens) compatible with the generated backbone. This two-step, hybrid methodology is
significant because it highlights that structure-guided sequence design currently relies on
integrating a powerful backbone DM with a specialized, non-diffusion inverse folding
tool. A pure diffusion model solution capable of generating both optimal structure and
sequence simultaneously remains an active area of research. Third, the resulting designs
undergo computational validation using high-accuracy structure prediction models like
AlphaFold2 [155] or RoseTTAFold [156] to verify that the designed sequence folds into
the intended structure and maintains the desired binding geometry. Finally, promising
candidates proceed to experimental validation through protein expression, purification,
and binding assays.

Despite these successes, significant challenges unique to peptide therapeutics re-
main. Generated peptides must be engineered for proteolytic stability to overcome their
inherently short in vivo half-lives, a consideration often addressed by incorporating non-
canonical amino acids or cyclization, which are not yet fully integrated into diffusion
workflows [185]. Furthermore, minimizing potential immunogenicity by avoiding T-cell
epitopes—specific peptide fragments recognized by the immune system that can trigger
an unwanted response—is a critical design constraint that requires sophisticated predic-
tive modeling [186]. Ultimately, ensuring that the designed sequence not only folds into
the intended conformation but also remains stable and avoids aggregation is paramount,
as current models may not fully capture the subtle side-chain interactions governing these
properties [187]. Integrating these complex biological and biophysical constraints into the
next generation of generative models represents a critical frontier for the field.

While the specific bottlenecks differ, the parallel evolution of diffusion models in these
two domains invites a systematic comparison. Synthesizing these distinct modality-specific
insights is essential to identify the shared fundamental challenges and to envision the
future trajectory of the field toward a unified, automated discovery paradigm.

5. Comparison, Challenges, and Future Perspectives
5.1. A Head-to-Head Comparison: Small Molecules vs. Peptides

The fundamental differences in applying diffusion models to small molecules and
peptides are visually contrasted in Figure 2 and further detailed in Table 1. This compar-
ison highlights distinct challenges and opportunities in each domain, providing a clear
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framework for understanding the current landscape. As illustrated, the design of small
molecules is fundamentally a challenge of navigating a vast, discrete chemical space to
ensure chemical synthesizability, whereas peptide design is a problem of conquering a con-
tinuous conformational space to achieve biological stability. These core distinctions dictate
everything from molecular representation to the primary validation hurdles, shaping two
related yet distinct fields of AI-driven discovery. Beyond these qualitative differences, quan-
titative performance metrics reveal the maturity and capabilities of current diffusion-based
approaches in each domain, as detailed in Table 2.

Table 1. A Head-to-Head Comparison: Diffusion Models for Small Molecules vs. Peptides.

Feature Small Molecules Therapeutic Peptides

Representation
Graphs: Atoms & bonds
3D Point Clouds: Coordinates
Requires E(3) equivariance [53,70,71]

Sequences: Discrete amino acids
3D Backbones: Continuous coordinates
Often requires distinct models for sequence (discrete)
and structure (continuous) generation

Chemical Space Vast & Discontinuous (∼1060) [11,12,15,188]
Learns implicit chemical rules (e.g., valence)

Combinatorial & Structured (20n) [12]
Governed by protein folding principles

Typical Size

MW: 150–900 Da (oral drugs often
300–500 Da) [189]
Heavy Atoms: 10–50
Mostly rigid structures

MW: 500–5000 Da
Length: 5–50 amino acids [190]
Highly flexible, multiple conformations

Key Challenge Synthesizability: Can it be made? [132]
Stereochemistry control

Biological Stability: Folding, proteolysis
Immunogenicity avoidance [190]

Validation
Computational: Docking, ADMET [191,192]
Experimental: Synthesis, binding assays (SPR,
ITC) [193–195]

Computational: Structure prediction (AF2) [155]
Experimental: Expression, binding & stabil-
ity assays

Conditioning
Protein pocket geometry [59,103,121]
Pharmacophores, desired properties (QED,
logP) [126]

Target protein surface [65]
Structural motifs (helix), sequence patterns

Data & Cost
Data: PDBbind (∼20k complexes), CrossDocked
( 100k pairs)
Cost: Varies widely by model and scale

Data: PDB (∼220k entries), AlphaFold DB
(>200 M structures)
Cost: Varies widely by model and scale

Success Metrics
Chemical: Validity, Uniqueness,
Novelty [96,103,196]
Predicted Affinity: High-affinity rate

Structural: Designability (folds to target) [155]
Experimental Success: Varies, often a few to
tens of percent [65]

Example Works Pocket2Mol [121], DiffSBDD [103], TargetD-
iff [59], GeoDiff [71], DiffLinker [197]

RFdiffusion [65], ProteinMPNN [180] (seq.
design), Chroma [198], EvoDiff [61], Fold-
ingDiff [67]
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Table 2. Performance Highlights of Representative Models in Molecular Generation.

Model Modality/Role Key Performance Metrics & Highlights

Small Molecule Generation (Diffusion Models)

Pocket2Mol [121] Structure-based generation Avg. Vina score: −7.29 kcal/mol; High-affinity rate: 54.2%; Good drug-
likeness (QED: 0.56).

DiffSBDD [103] Structure-based generation High chemical validity (97.8%) and novelty (85.7%); Median Vina score:
−7.50 kcal/mol.

TargetDiff [59] Guided generation State-of-the-art binding affinity (Avg. Vina: −7.80 kcal/mol); High-affinity
rate: 58.1%.

GeoDiff [71] Conformer generation High-quality 3D conformer generation with low geometric error (MAT-R:
0.86 Å on Drugs dataset).

Peptide and Protein Design (Diffusion-Centric Workflows)

RFdiffusion [65] Backbone generation (Diffu-
sion)

High experimental success rate for binders (14–19%); Generated structures
match Cryo-EM to 0.63 Å RMSD.

ProteinMPNN [180] Sequence design (GNN,
non-diffusion)

High native sequence recovery (52.4%); Essential downstream tool for de-
signing sequences for generated backbones.

Chroma [198] Protein/Complex genera-
tion (Diffusion)

Experimentally confirmed designs with crystal structures matching to ~1.0 Å
RMSD; Generates diverse topologies.

EvoDiff [61] Sequence generation (Dis-
crete Diffusion)

High experimental success for functional proteins (65–75%); Generates evolu-
tionarily plausible sequences.

Figure 2. Contrasting Design Paradigms for Small Molecules and Therapeutic Peptides with Dif-
fusion Models. The figure illustrates the distinct challenges and tailored AI-driven solutions for
small molecules (left column, (a,c,e,g)) versus therapeutic peptides (right column, (b,d,f,h)). (a,b) The
primary challenge for small molecules is navigating the vast, discrete chemical space, whereas for
peptides, it is conquering the continuous conformational space to achieve a stable fold. (c,d) Conse-
quently, diffusion models are employed for structure-based generation to fit small molecules into
binding pockets, while for peptides, they perform structure-guided design by decorating a prede-
fined scaffold. (e,f) Key downstream hurdles also differ: ensuring chemical synthesizability for small
molecules versus achieving biological stability against degradation for peptides. (g,h) Finally, solu-
tions are modality-specific: integrating chemical knowledge (e.g., reaction rules) to guide synthesis
for small molecules, and engineering stability in peptides through modifications like cyclization or
using non-canonical amino acids. Explanation of symbols: The red crosses (X) indicate synthetic
infeasibility (e) or blocked enzymatic degradation (f,h). In (e), the colored spheres represent atoms
within a complex molecular graph structure.
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5.2. Shared Hurdles and Common Challenges

Despite their fundamental differences, the deployment of diffusion models in both
small molecule and peptide design is hampered by several shared, fundamental obstacles.
Perhaps the most universal bottleneck is the reliance on imperfect scoring functions to eval-
uate generated candidates. Current approaches depend heavily on computational proxies
like docking scores or predicted affinities, which often show poor correlation with exper-
imental reality and lead to high false-positive rates in downstream validation [199–207].
This challenge is directly exacerbated by the scarcity of high-quality labeled data. While
vast repositories exist [101,109,147,148,208,209], data that pairs molecular structures with
experimentally validated, high-fidelity biological activity or binding affinity is a rare
commodity, limiting the predictive power of supervised models [100,210]. Promising miti-
gation strategies include physics-informed modeling, active learning, and transfer learning,
but fundamental limitations remain [176,177,211–217].

Consequently, a critical imperative for the field is to “close the loop” by integrating
generative models with automated experimental validation in a Design-Build-Test-Learn
(DBTL) cycle, as illustrated in Figure 3 [218–220]. The implementation of such a cycle
creates a direct pathway from in silico hypothesis generation to experimental validation
and back, enabling a rapid, iterative flow where data from one round directly informs the
next. Without such a framework, which is now becoming feasible through advances in lab-
oratory automation [221–224], the design process remains a slow, sequential, and inefficient
endeavor [225–228]. Finally, even with better data and validation, the issue of generaliza-
tion persists. Like all machine learning models, diffusion models risk overfitting to their
training distribution, potentially failing to generate effective and novel solutions for new
biological targets or chemical spaces that lie outside their learned domain [127,229–231].
Overcoming these interconnected challenges is essential to translate the theoretical promise
of diffusion models into tangible therapeutic breakthroughs [232,233].

Figure 3. A Closed-Loop Paradigm for Drug Discovery Driven by AI and Automation. The figure
depicts an autonomous Design-Build-Test-Learn (DBTL) cycle, representing a future paradigm for
accelerated therapeutic discovery. This approach seamlessly integrates AI-powered design with
automated laboratory execution to create a self-optimizing discovery engine. (a) Design: Generative
AI models propose novel molecular candidates in silico. (b) Build: The most promising candidates are
synthesized and purified using robotic platforms. (c) Test: The synthesized compounds are evaluated
in high-throughput biological assays to generate activity data. (d) Learn: Experimental results are fed
back into the AI model, which updates its knowledge and generates more informed hypotheses for
the next cycle. This iterative process aims to dramatically shorten timelines and increase the success
rate of finding novel medicines.
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5.3. Future Outlook and Opportunities

A critical measure of success for any drug discovery technology is its path to clinical
translation. While molecules designed specifically by diffusion models have not yet entered
human clinical trials, the broader field of generative AI provides a strong and encouraging
precedent. Companies such as Insilico Medicine, Exscientia, and Recursion Pharmaceuti-
cals have successfully advanced AI-designed small molecules into various stages of clinical
development, validating the principle that AI can indeed yield viable therapeutic candi-
dates [234,235]. This industry progress sets the stage for diffusion models, which represent
the state-of-the-art in generative capability. Several leading biotechnology companies are
now deeply integrating these models into their R&D pipelines, and although much of this
work remains proprietary, early reports indicate that diffusion-generated candidates are
demonstrating excellent activity and favorable properties in preclinical studies. This marks
a rapid transition of the technology from academic exploration to industrial application.

The field of diffusion models for drug discovery is rapidly evolving, with future
work poised to address current limitations and unlock transformative capabilities. A key
frontier is the development of unified frameworks—so-called “foundation models” for
molecular science—that could seamlessly design not only small molecules and peptides
but also complex hybrid therapeutics like peptide-drug conjugates (PDCs) and PROTACs
from a single, powerful architecture. Enhancing model reliability is also paramount;
this involves a shift from ‘black box’ generators to interpretable and controllable tools
that empower expert-guided design, while integrating first-principles simulations from
quantum chemistry and physics to ensure the physical realism of generated candidates.
Ultimately, the successful translation of these technologies will hinge on fully realizing the
automated Design-Build-Test-Learn (DBTL) paradigm, as illustrated in Figure 3, which
promises to accelerate discovery cycles from months to days. This acceleration, however,
must be navigated alongside the establishment of clear ethical and regulatory frameworks
to guide AI-designed therapeutics safely from concept to clinic.

6. Conclusions
Diffusion models have emerged as a powerful, unified generative framework, demon-

strating remarkable versatility in designing both small molecules and therapeutic peptides.
While successful in generating novel candidates for both modalities, the path to clinical
translation is defined by distinct, fundamental hurdles: for small molecules, the challenge
lies in bridging the gap from computational validity to practical chemical synthesizability;
for peptides, it is ensuring that de novo structural designs achieve in vivo biological stability
and function. Crucially, the progress of AI-designed drugs now entering clinical trials pro-
vides a strong tailwind for the field, validating the potential of these advanced generative
approaches. The full potential of this technology will be significantly accelerated by closing
the Design-Build-Test-Learn loop through deep integration with laboratory automation,
which will enable rapid, data-driven iteration. By overcoming these challenges, diffusion
models hold the promise to catalyze a fundamental shift in drug discovery—moving from
the passive exploration of existing chemical space to the active, purpose-driven creation of
novel medicines.
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135. Gaiński, P.; Boussif, O.; Rekesh, A.; Shevchuk, D.; Parviz, A.; Tyers, M.; Batey, R.A.; Koziarski, M. Scalable and cost-efficient de
novo template-based molecular generation. arXiv 2025, arXiv:2506.19865.

136. Liu, S.; Zhang, D.; Tu, Z.; Dai, H.; Liu, P. Evaluating Molecule Synthesizability via Retrosynthetic Planning and Reaction
Prediction. arXiv 2024, arXiv:2411.08306.

137. Zeng, X.; Wang, F.; Luo, Y.; Kang, S.G.; Tang, J.; Lightstone, F.C.; Cheng, F. Deep generative molecular design reshapes drug
discovery. Cell Rep. Med. 2022, 3, 100794. [CrossRef] [PubMed]

138. Fu, C.; Chen, Q. The future of pharmaceuticals: Artificial intelligence in drug discovery and development. J. Pharm. Anal. 2025,
15, 101248. [CrossRef] [PubMed]

139. Ramos, M.C.; Collison, C.J.; White, A.D. A review of large language models and autonomous agents in chemistry. Chem. Sci.
2025, 16, 2514–2572. [CrossRef]

140. Orengo, C.A.; Michie, A.D.; Jones, S.; Jones, D.T.; Swindells, M.B.; Thornton, J.M. CATH–a hierarchic classification of protein
domain structures. Structure 1997, 5, 1093–1109. [CrossRef] [PubMed]

141. Sillitoe, I.; Lewis, T.E.; Cuff, A.; Das, S.; Ashford, P.; Dawson, N.L.; Furnham, N.; Laskowski, R.A.; Lee, D.; Lees, J.G.; et al. CATH:
Comprehensive structural and functional annotations for genome sequences. Nucleic Acids Res. 2015, 43, D376–D381. [CrossRef]
[PubMed]

142. Fox, N.K.; Brenner, S.E.; Chandonia, J.M. SCOPe: Structural Classification of Proteins—Extended, integrating SCOP and ASTRAL
data and classification of new structures. Nucleic Acids Res. 2014, 42, D304–D309. [CrossRef]

143. Chandonia, J.M.; Fox, N.K.; Brenner, S.E. SCOPe: Classification of large macromolecular structures in the structural classification
of proteins—Extended database. Nucleic Acids Res. 2019, 47, D475–D481. [CrossRef] [PubMed]

144. Apweiler, R.; Bairoch, A.; Wu, C.H.; Barker, W.C.; Boeckmann, B.; Ferro, S.; Gasteiger, E.; Huang, H.; Lopez, R.; Magrane, M.; et al.
UniProt: The universal protein knowledgebase. Nucleic Acids Res. 2004, 32, D115–D119. [CrossRef]

145. UniProt: The universal protein knowledgebase in 2025. Nucleic Acids Res. 2025, 53, D609–D617. [CrossRef]
146. Suzek, B.E.; Huang, H.; McGarvey, P.; Mazumder, R.; Wu, C.H. UniRef: Comprehensive and non-redundant UniProt reference

clusters. Bioinformatics 2007, 23, 1282–1288. [CrossRef]
147. Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Oregi, O.; Kleywegt, G.; Kleywegt,

G.J.; et al. AlphaFold Protein Structure Database: Massively expanding the structural coverage of protein-sequence space with
high-accuracy models. Nucleic Acids Res. 2022, 50, D439–D444. [CrossRef]

148. Varadi, M.; Bertoni, D.; Magana, P.; Paramval, U.; Pidruchna, I.; Radhakrishnan, M.; Tucholska, A.; Yahiya, M.; Kleywegt, G.J.;
Velankar, S. AlphaFold Protein Structure Database in 2024: Providing structure coverage for over 214 million protein sequences.
Nucleic Acids Res. 2024, 52, D368–D375. [CrossRef]

149. Wang, G.; Li, X.; Wang, Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016,
44, D1087–D1093. [CrossRef]

150. Pirtskhalava, M.; Amstrong, A.A.; Grigolava, M.; Chubinidze, M.; Alimbarashvili, E.; Vishnepolsky, B.; Tartakovsky, M. DBAASP
v3: Database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics.
Nucleic Acids Res. 2021, 49, D288–D297. [CrossRef]

151. Gautam, A.; Singh, H.; Tyagi, A.; Chaudhary, K.; Kumar, R.; Kapoor, P.; Raghava, G.P.S. CPPsite: A curated database of cell
penetrating peptides. Database 2012, 2012, bas015. [CrossRef]

152. Agrawal, P.; Bhalla, S.; Usmani, S.S.; Singh, S.; Chaudhary, K.; Raghava, G.P.; Gautam, A. CPPsite 2.0: A repository of
experimentally validated cell-penetrating peptides. Nucleic Acids Res. 2016, 44, D1098–D1103. [CrossRef] [PubMed]

153. Liu, Z.; Li, Y.; Han, L.; Li, J.; Liu, J.; Zhao, Z.; Nie, W.; Liu, Y.; Wang, R. PDB-wide collection of binding data: Current status of the
PDBbind database. Bioinformatics 2015, 31, 405–412. [CrossRef] [PubMed]

154. Wang, R.; Fang, X.; Lu, Y.; Yang, C.Y.; Wang, S. The PDBbind database: Methodologies and updates. J. Med. Chem. 2005,
48, 4111–4119. [CrossRef]

155. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko,
A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [CrossRef]

156. Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.;
et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 2021, 373, 871–876.
[CrossRef] [PubMed]

157. Tang, S.; Zhang, Y.; Chatterjee, P. Peptune: De novo generation of therapeutic peptides with multi-objective-guided discrete
diffusion. arXiv 2025, arXiv:2412.17780.

158. Meshchaninov, V.; Strashnov, P.; Shevtsov, A.; Nikolaev, F.; Ivanisenko, N.; Kardymon, O.; Vetrov, D. Diffusion on language model
encodings for protein sequence generation. arXiv 2024, arXiv:2403.03726.

http://dx.doi.org/10.1002/advs.202206674
http://dx.doi.org/10.1016/j.xcrm.2022.100794
http://www.ncbi.nlm.nih.gov/pubmed/36306797
http://dx.doi.org/10.1016/j.jpha.2025.101248
http://www.ncbi.nlm.nih.gov/pubmed/40893437
http://dx.doi.org/10.1039/D4SC03921A
http://dx.doi.org/10.1016/S0969-2126(97)00260-8
http://www.ncbi.nlm.nih.gov/pubmed/9309224
http://dx.doi.org/10.1093/nar/gku947
http://www.ncbi.nlm.nih.gov/pubmed/25348408
http://dx.doi.org/10.1093/nar/gkt1240
http://dx.doi.org/10.1093/nar/gky1134
http://www.ncbi.nlm.nih.gov/pubmed/30500919
http://dx.doi.org/10.1093/nar/gkh131
http://dx.doi.org/10.1093/nar/gkae1010
http://dx.doi.org/10.1093/bioinformatics/btm098
http://dx.doi.org/10.1093/nar/gkab1061
http://dx.doi.org/10.1093/nar/gkad1011
http://dx.doi.org/10.1093/nar/gkv1278
http://dx.doi.org/10.1093/nar/gkaa991
http://dx.doi.org/10.1093/database/bas015
http://dx.doi.org/10.1093/nar/gkv1266
http://www.ncbi.nlm.nih.gov/pubmed/26586798
http://dx.doi.org/10.1093/bioinformatics/btu626
http://www.ncbi.nlm.nih.gov/pubmed/25301850
http://dx.doi.org/10.1021/jm048957q
http://dx.doi.org/10.1038/s41586-021-03819-2
http://dx.doi.org/10.1126/science.abj8754
http://www.ncbi.nlm.nih.gov/pubmed/34282049


Biology 2025, 14, 1665 23 of 26

159. Luo, Z.; Geng, A.; Wei, L.; Zou, Q.; Cui, F.; Zhang, Z. CPL-Diff: A Diffusion Model for De Novo Design of Functional Peptide
Sequences with Fixed Length. Adv. Sci. 2025, 12, 2412926. [CrossRef]
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