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ABSTRACT: Predicting protein function from its primary sequence is a
fundamental challenge in computational biology. While deep learning has
excelled, the optimal representation of sequence data remains an open question.
This study explores protein sonification�the conversion of amino acid sequences
into 2D spectrograms�as a representation of this task. To facilitate this
investigation, we developed a benchmark data set of 18,000 sequences spanning
12 functionally diverse protein classes. Our systematic evaluation suggests that the
structural transformation from a 1D sequence to a 2D spectrogram may be a key
contributor to the model’s predictive performance. This observation is supported
by ablation studies where models using either purely visual or acoustic features
from the spectrogram demonstrated effective stand-alone performance, suggesting
that the representation itself is a key source of this capability. For instance, a
model using a sonification map without explicit biophysical meaning achieved
81.08% accuracy, while our biophysically informed model reached 84.00%, indicating that such domain knowledge may offer a
modest performance benefit. When trained from scratch on our data set, our fusion model achieved performance comparable to or
slightly exceeding that of standard transformer architectures like ESM-2 and ProtBERT, suggesting its potential for data efficiency in
this specific context. The model’s potential for generalizability was further supported by its performance on the external CARE
enzyme classification benchmark, where it achieved 90.44% accuracy. Finally, as a proof-of-concept, we explore the utility of our
encoding to guide a diffusion model in generating novel green fluorescent protein variants, which were assessed for structural
viability using computational methods. Our work provides evidence suggesting that the utility of sonification in this context may
stem largely from its representational structure, offering a perspective on feature engineering for biological sequences.

■ INTRODUCTION
Understanding the complex relationship between protein
sequence, structure, and function is a paramount challenge in
the biological sciences.1−4 While dominant computational
methods, such as protein language models (PLMs) and
structure-based predictors, have achieved remarkable success,
they each have inherent limitations.5−7 PLMs, which process
sequences linearly, can struggle to capture the long-range,
quasi−periodic correlations that define global protein
architecture.8−10 This creates an opportunity for novel data
representations that can efficiently extract holistic, functional
information from primary sequences.
This study investigates protein sonification, the translation

of sequence data into a rich, two-dimensional spectro-
gram.11−13 Our approach leverages a powerful and broadly
validated computational strategy: transforming 1D biological
sequences into 2D representations to capture long-range
interactions (LRIs) that are otherwise missed. This paradigm
has become a pillar of modern bioinformatics, driving
breakthroughs in fields as diverse as protein structure
prediction with AlphaFold14,15 3D genome folding,16,17 and
RNA secondary structure analysis.18 Motivated by these
successes, we employ sonification to “fold” a 1D sequence

into a 2D spectrogram. In this format, sequence-distant
residues are brought into spatial proximity, enabling standard
convolutional networks to model global functional signatures
in a computationally efficient manner.
However, a critical question arises: if such a method is

effective, then what is the source of its power? Is it the specific,
biophysically inspired rules used for the translation, which
could be viewed as speculative, or is it the fundamental act of
transforming a 1D sequence into a 2D representation? To
address this question directly, we moved beyond heuristic
mappings to establish a quantitative sonification framework
based on first-principles of amino acid physicochemical
properties. We began by rigorously validating the core premise
of this framework�the link between static sequence properties
and true protein dynamics�with extensive molecular dynam-
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ics (MD) simulations across diverse protein-fold families.
Then, we conducted a series of controlled experiments on a
broad and functionally diverse data set, comparing our theory-
driven model against alternatives with inverted or randomized
semantics. This investigation points toward the importance of
the 1D-to-2D data representation itself, a central theme of this
work. Our results suggest that functional patterns might be
learned as emergent properties from this structured repre-
sentation.

■ RELATED WORKS
Computational Approaches to Protein Function

Prediction. The analysis of protein structure and function
has long been propelled by experimental techniques such as X-
ray crystallography and Cryo-EM, which provide high-
resolution but often static snapshots of molecular machi-
nery.19,20 To overcome the throughput and dynamic
limitations of these methods, computational approaches have
become indispensable.21 In recent years, deep learning has
revolutionized the field, most notably with DeepMind’s
AlphaFold, which has achieved unprecedented accuracy in
predicting protein structures from sequence.7,22,23 These
advances have driven new biological insights by providing
reliable structural models for millions of proteins.24

However, a static structure does not equate to a complete
function. Even state-of-the-art models face challenges in
capturing the dynamics of flexible regions, modeling complex
multiprotein interactions, and fully elucidating the functional
context from structure alone.25,26 This highlights a critical gap:
there is an urgent need for novel data representations that can
transcend 1D sequences and 3D structures to more
comprehensively capture functional information. While models
operating on 1D sequences (like PLMs27) or 3D struc-
tures7,15,28 have been highly successful, there remains a need
for novel data representations that can capture the hierarchical
and quasi-structural information implicitly encoded in a
protein’s primary sequence in a more holistic manner.29

Sonification and Audio-Based Methods in Bioinfor-
matics. One emerging avenue for developing such represen-
tations is to draw an analogy between the hierarchical
complexity of proteins and music, whose mathematical and
structural properties offer a rich framework for encoding
biological data.30,31 This concept was established in early
pioneering works like “Protein Music”,32 which translated
sequences into melody and bass lines for data analysis. The
approach has since been adapted for diverse goals, including
enhancing accessibility for the visually impaired by creating
classical music from sequences33,34 and assisting in complex
tasks like protein alignment through combined auditory and
visual representations.35

Building on this foundation, recent work has employed more
sophisticated deep learning methods. A significant advance-
ment is Buehler’s “AttentionCrossTranslation” model, which
introduced a powerful framework for unsupervised, bidirec-
tional translation between musical and protein domains using
interacting transformer networks.12 A key strength of their
model is its ability to perform bidirectional and cycle-
consistent translations, ensuring high fidelity. This work
established a powerful, generalizable methodology for finding
hidden relationships between data types, moving the field
toward fully automated pattern discovery. Concurrently, the
“conversion of music to protein” (CoMtP) concept further

demonstrated that musical scores can serve as templates for
designing new functional peptides.36

While the unsupervised discovery of translation rules, as
pioneered by Buehler et al., is a powerful approach for
fundamental pattern analysis, our research addresses a
different, complementary scientific goal. Our work is not
aimed at discovering a universal mapping itself but rather at
testing a specific, human-driven hypothesis: can a biophysically
grounded, quantitative mapping serve as an effective feature
engineering strategy for a downstream machine learning task,
namely, protein function prediction? Therefore, our philoso-
phy is distinct. We intentionally leverage existing scientific
knowledge (i.e., physicochemical properties) to construct
transparent and interpretable quantitative mapping. The
primary goal is not translation fidelity for its own sake but
the creation of a feature-rich 2D representation (the
spectrogram) that is optimized for analysis by computer vision
models. The effectiveness of this knowledge-driven feature
engineering approach is evaluated by the accuracy achieved on
the predictive task.

The Resonant Recognition Model: A Precedent for
Signal-Based Functional Analysis. A significant precedent
for treating biological sequences as signals to decode functions
is the Resonant Recognition Model (RRM). This physico-
mathematical framework posits that biomolecular interactions
are governed by resonant energy transfer.37,38 The core
methodology converts an amino acid sequence into a
numerical signal�often using the electron−ion interaction
potential�and then applies Fourier analysis. This approach
builds directly on foundational work that first demonstrated
how periodicities in physicochemical properties, such as the
“hydrophobic moment”, strongly correlate with secondary
structures like α-helices and β-sheets.39 The RRM posits that a
single, dominant peak in the resulting frequency spectrum�
the “characteristic frequency”�is strongly correlated with the
protein’s specific biological function or interaction.40 The
practical utility of this model is well-established; it has been
successfully used to design novel bioactive peptides41 and,
more recently, to explain complex phenomena like long-
distance DNA−protein interactions.42
Furthermore, the RRM framework has proven to be both

generalizable and extensible. Its principles have been
successfully adapted for the classification of other macro-
molecules, serving as an effective preprocessing technique for
distinguishing between different classes of RNA sequences.43

Recognizing that a single power spectrum might not capture all
available information, researchers developed the Complex
RRM (CRRM). This extension utilizes both the real and
imaginary components of the Fourier spectrum, providing a
richer, two-dimensional view of the signal’s frequency
characteristics. The CRRM demonstrated superior perform-
ance in distinguishing subtle biological differences between
closely related viral protein families, such as subtypes of
Influenza A neuraminidase, where the traditional RRM was
insufficient.44

Collectively, the extensive literature on RRM and its
derivatives provides a powerful theoretical and empirical
foundation for our work. It establishes that transforming the
linear information on a biological sequence into the frequency
domain is a biophysically grounded and highly effective
strategy for functional analysis. The evolution from RRM to
CRRM also highlights a clear trajectory: increasing the
dimensionality of the signal representation can unlock deeper
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biological insights. Our sonification approach is conceptually
aligned with this trajectory but takes a substantial leap forward
by synthesizing multiple physicochemical properties into a
complex, information-dense, two-dimensional spectrogram.

■ METHODS
Data Set Curation and Preprocessing. To construct a

benchmark for evaluating protein function prediction that
represents a broad spectrum of biological roles, we curated a
data set of 18,000 sequences from 12 distinct protein classes:
Enzyme, Structural, Transport, Storage, Signaling, Receptor,
Regulatory, Immune, Chaperone, Cell Adhesion, Motor, and
Antimicrobial. Protein sequences were sourced from several
authoritative public databases to ensure diversity and quality.
These included the NCBI RefSeq collection,45 the UniProt
Knowledgebase (UniProtKB),46 and specialized databases such
as the Antimicrobial Peptide Database,47 the Transporter
Classification Database (TCDB)48 for transport proteins, and
the CARE database49 for enzymes. To ensure data quality and
reduce redundancy, we employed the CD-HIT clustering
algorithm,50 removing all sequences with an identity of over
90% to any other sequence in the data set. The final data set
was balanced, containing 1500 sequences for each of the 12
classes. For model training and evaluation, we partitioned the
data into a training set (70%, 12,600 sequences), a validation
set (10%, 1800 sequences), and an independent test set (20%,
3600 sequences). This stratified split ensures that each data
partition maintains the original class distribution.51

Quantitative, Biophysically Grounded Sonification
Framework. To move beyond heuristic rules and establish a
rigorous foundation, we developed a quantitative framework
that maps fundamental amino acid physicochemical properties
to musical elements. The core of our framework is the
translation of the primary sequence into a musical score, which
is then rendered as a 2D spectrogram for analysis. Our central
scientific question was whether the model’s performance stems
from the specific biophysical semantics encoded in the
mapping rules or from the structural transformation of the
1D sequence into a 2D representation. To answer this, we
implemented and compared three distinct mapping schemes.
Theory-Driven Quantitative Model. This model serves as

our principled, theory-driven starting point. Our focus on
hydrophobicity is motivated by the foundational discovery that
periodicities in this property along the primary sequence are
strong determinants of secondary structure,39 with further
computational studies confirming that this global patterning of
hydrophobic and polar residues is a dominant force in
determining the overall protein fold, often overriding the
intrinsic propensities of individual amino acids52 Building on
this, our model is based on the biophysical hypothesis that
stable, hydrophobic residues in the protein core correspond to
low-frequency collective motions. To implement this, we map
higher hydrophobicity to lower pitches, a design inspired by
psychoacoustic analogies linking low frequencies to stability.53

The validity of this choice is empirically demonstrated in our
results (Table 2), where this mapping provides a clear
performance advantage over the control models. The pitch
of each note is determined by the hydrophobicity of the
corresponding amino acid, following the formula:

H Snote round(base note ( ))= _ ×
where note is the resulting MIDI pitch number, base_note is a
reference pitch set to 60 (Middle C), H is the Kyte-Doolittle

hydrophobicity index of the amino acid, and S is a scaling
factor set to 3. This formula directly implements our
hypothesis that a higher hydrophobicity corresponds to
lower, more stable-sounding pitches. Timbre, or the tonal
quality, is determined by amino acid polarity based on the
Zimmerman scale, with polar residues mapped to “bright”
timbres (e.g., piano) and nonpolar residues to “dark” timbres
(e.g., cello).

Control Models. To deconstruct the source of performance,
we designed two control models:

• Inverted Semantics Model: As a direct control for the
directionality of the biophysical analogy, we inverted the
core mapping rule such that higher hydrophobicity was
mapped to higher musical pitches (note = round-
(base_note + (H × S))), while all other rules remained
identical.

• Semantic Ablation Model: To isolate the effect of the 2D
representation structure itself, we created a model with a
fixed, but random, mapping between the 20 amino acids
and a set of 20 distinct pitches. This removes any
biophysical meaning from the pitch assignment while
preserving a consistent 1D-to-2D transformation.

Biophysical Validation of the Sequence-to-Dynamics
Mapping Principle. To establish a rigorous biophysical
foundation for our entire sonification framework, we
performed a critical computational experiment. The objective
was to validate our core premise: that it is valid and meaningful
to map static sequence information onto a dynamic temporal
medium like music. We hypothesized that if our encoding
philosophy is sound, then the static features we use as proxies
for dynamics (like B-factors for flexibility) must correlate with
“ground truth” physical dynamics observed in simulation.

MD Simulations. To assess the generalizability of our
findings, we performed MD simulations on four proteins
representing highly diverse structural fold families: T4
Lysozyme (PDB ID: 2LZM, an α/β protein), a de novo
designed TIM-barrel (PDB ID: 5BVL, an α/β protein), a Villin
Headpiece (PDB ID: 2F4K, an all-α protein), and green
fluorescent protein (GFP) (PDB ID: 1EMA, an all-β barrel

Table 1. Correlation between Experimental B-Factors and
MD-Derived RMSF across Diverse Protein Folds

PDB ID Protein-fold family Pearson’s r P-value

2F4K all-α (Villin headpiece) 0.9030 6.58 × 10−13
5BVL α/β (TIM-Barrel) 0.6768 1.85 × 10−25
2LZM α/β (T4 Lysozyme) 0.5478 3.15 × 10−14
1EMA all-β (GFP) 0.3653 4.01 × 10−8

Table 2. Performance Comparison of Different Sonification
Mapping Schemes on the 12-Class Dataseta

mapping
scheme core principle

accuracy
(%) precision recall F1-score

theory-driven biophysical
semantics

84.00 0.84 0.84 0.84

inverted
semantics

inverted
biophysics

82.69 0.83 0.83 0.83

semantic
ablation
(random)

structure-only 81.08 0.81 0.81 0.81

aAll models use the identical end-to-end fusion architecture and were
evaluated on the same independent test set to deconstruct the source
of performance.
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protein). All simulations were conducted using the GRO-
MACS package with the AMBER99SB-ILDN force field and
the TIP3P water model. Following standard system prepara-
tion and equilibration, a 100 ns production MD simulation was
carried out for each system in the NPT ensemble. The stability
of each trajectory was confirmed by the convergence of the
backbone root-mean-square deviation (RMSD). A detailed
simulation protocol is provided in the Supporting Information.
Data Analysis. For each trajectory, the root-mean-square

fluctuation (RMSF) of each residue’s Cα atom was calculated
from the full 100 ns production run using the gmx rmsf tool,
serving as the ground-truth measure of dynamic flexibility. The
experimental B-factors were extracted from the corresponding
PDB files. Given that these two metrics are theoretically
related,54 we quantified their linear relationship by calculating
the Pearson correlation coefficient (r) and its corresponding p-
value. This direct comparison validates the link between the
static crystallographic data and the dynamic behavior.
Comparative Models for Protein Function Classification.

Our analytical pipeline was designed to rigorously investigate
the interplay between the nature of the input signal (1D vs
2D) and the model’s learning paradigm. All sonification-based
models were trained using data generated by the three
mapping schemes described previously, with the performance
in comparative tables corresponding to the best-performing
theory-driven model unless stated otherwise.
Baseline Models on 1D Physicochemical Signals. We first

established performance baselines by using the primary 1D
physicochemical sequence. Each protein sequence was
converted to a numerical signal by mapping amino acids to
their Kyte-Doolittle hydrophobicity values.

Classical ML with Spectral Features. We applied a Fast
Fourier Transform (FFT) to each 1D signal to extract spectral
features, which were then used to train an ensemble machine
learning model.

1D Convolutional Neural Network. We also applied a 1D
convolutional neural network (CNN) directly to the 1D
signals to establish a modern deep learning baseline.

Sonification-Based Models on 2D Spectrograms. Next, we
advanced the data representation by translating protein
sequences into 2D spectrograms via sonification.

Classical ML with Acoustic Features. To isolate the impact
of the 2D representation, we extracted Mel-Frequency-
Cepstral Coefficients (MFCCs) from each spectrogram and
fed them into the same classical ML pipeline.

Model Architecture and Ablation Study. Finally, we
combined the advanced 2D representation with a sophisti-
cated, end-to-end deep learning model. The final model
features a dual-branch architecture, fusing features from a
Visual Branch (a ConvNeXt-Tiny backbone processing the
spectrogram image55) and an Acoustic Branch (a GRU with
attention processing the MFCC sequence). The concatenated
features are passed to a final classification head.
To deconstruct the contributions of each modality and

investigate the source of the model’s performance, we designed
two additional model configurations for an ablation study. The
Visual-Only Model consists solely of the ConvNeXt-Tiny
backbone, processing the complete spectrogram as an image.
Conversely, the Acoustic-Only Model utilizes only the GRU
with an attention mechanism, taking the MFCC sequence
derived from the spectrogram as its input. These configurations
allow for a direct comparison of the predictive power inherent

Figure 1. Our analytical pipeline is designed as a systematic comparative study to demonstrate the progressive benefits of evolving both data
representation and model complexity. The workflow encompasses four distinct models: (a) 1D CNN on 1D signal: a deep learning model that
learns features directly from the raw 1D physicochemical signal. (b) Classical ML on 1D signal: a baseline model that relies on spectral features
extracted via FFT from the 1D signal. (c) Classical ML on 2D spectrogram: a model that uses engineered audio features Mel-frequency cepstral
coefficients (MFCC) from spectrograms. (d) End-to-End fusion model on 2D spectrogram: our final model, which employs a CNN and an
attention mechanism to automatically learn and fuse features from the 2D spectrograms.
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in the visual versus the acoustic interpretation of the sonified
data.
Benchmark Models for Comparison. To situate our

model’s performance, we benchmarked it against prominent
PLMs and classical homology-based methods.
PLMs (ESM-2 and ProtBERT). We evaluated two prominent

PLMs: ESM-2 (8M[56 and 35M57 parameter versions)5 and
ProtBERT.6 Both were tested under two conditions: a fine-
tuning setting using official pretrained weights, and a from-
scratch training setting using only our data set, which provides
a direct comparison of data efficiency and the inherent
capabilities of the architectures.
Homology-Based Search (BLAST + kNN). As a classical

baseline, we implemented two BLAST-based k-Nearest
Neighbors (kNN) classifiers.58,59 The primary benchmark
searches against the manually curated Swiss-Prot database to
simulate a real-world annotation scenario. A secondary
baseline searches against our own training set, serving as a
measure of performance based on sequence similarity within
our specific data distribution. We report the more challenging
Swiss-Prot results in the main text.

Generative Design of GFP Variants. To demonstrate the
practical utility of our encoding, we integrated it into a
conditional diffusion model to guide the de novo design of
GFP variants. The model was trained on experimental
fluorescence data60 and employed a multiobjective selection
strategy that balanced predicted fitness with a harmonic score
derived from our sonification framework, aiming to generate
novel sequences that were both high-functioning and
structurally viable.

■ RESULTS
Biophysical Foundation of the Sonification Frame-

work. Before evaluating classification models, we first sought
to validate the core premise of our quantitative sonification
framework: mapping static sequence properties to a dynamic
medium is a biophysically meaningful approach. To address
the potential limitations of a single-protein validation, we
extended our analysis to four proteins representing diverse fold
families (all-α, all-β, and two distinct α/β topologies), each
simulated for a comprehensive 100 ns (Figure 1).

Figure 2. Assessing B-factors as a proxy for dynamic flexibility across diverse protein-fold families. Comparison of experimental flexibility
(crystallographic B-factors, blue) and simulated dynamic flexibility (RMSF from 100 ns MD simulations, orange) for four proteins representing
distinct structural classes. The plots show statistically significant positive correlations for (a) the all-α Villin Headpiece (2F4K, r = 0.903), (b) the
α/β TIM-Barrel (5BVL, r = 0.677), (c) the α/β T4 Lysozyme (2LZM, r = 0.548), and (d) the all-β GFP (1EMA, r = 0.365). All correlations are
highly significant (p < 1 × 10−7). This analysis provides biophysical support for the principle of mapping static structural properties to dynamic
features in our sonification framework. (e) Cartoon representations of the protein structures analyzed in (A−D), shown in corresponding order
from left to right.
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Our analysis revealed statistically significant positive
correlations between the experimental B-factors and the
simulation-derived RMSF values for all four proteins, as
detailed in Table 1. Notably, the all-α Villin Headpiece (2F4K)
showed a strong correlation (r = 0.9030), while even more
complex proteins such as the TIM-barrel (5BVL) and T4
Lysozyme (2LZM) demonstrated significant correlations.
These results provide quantitative evidence supporting the
use of static crystallographic data as a proxy for dynamic
flexibility across different protein architectures. This supports
the premise that the fundamental principle of our encoding is
grounded in the physical reality of protein dynamics,
strengthening the biophysical rationale for our methodology.
The correspondence is visualized in Figure 2.

Visual and Quantitative Interpretation of the Protein
Score. To provide an intuitive illustration of our encoding
framework, we translated protein sequences not only into
spectrograms for machine analysis but also into conventional
musical scores for human interpretation. This allows for a
direct visual inspection of how a protein’s physicochemical
properties are mapped onto musical language. To illustrate
this, we selected two proteins with contrasting architectures:
the small, highly stable, all-α-helical Villin Headpiece (1VII)
and the larger, structurally complex T4 Lysozyme (2LZM),
which contains a mix of helices, sheets, and flexible loops.

As shown in Figure 3, the resulting scores are visually and
quantitatively distinct, reflecting their underlying biochemical
differences. The score for the stable Villin Headpiece (Figure
3a) exhibits a higher degree of regularity. Its melody,
determined by amino acid hydrophobicity, shows a less
dramatic fluctuation, and its rhythm, governed by molecular
weight, is more uniform. In contrast, the score for the complex
T4 Lysozyme (Figure 3b) is noticeably more varied, featuring
greater melodic leaps and more intricate rhythmic patterns.
To formalize this visual observation, we calculated complex-

ity metrics for the first 30 amino acid fragment. The ‘melodic
complexity’ was quantified as the average absolute difference in
hydrophobicity between adjacent residues, while ‘rhythmic
complexity’ was defined as the standard deviation of molecular
weights. The analysis indicates that the T4 Lysozyme fragment
is more complex, possessing a 35.1% higher melodic
complexity score (4.58 vs 3.39) and a 7.4% higher rhythmic
complexity score (29.70 vs 27.65) than the Villin fragment.
This visual and quantitative comparison suggests that our
framework can translate core structural and chemical features
into distinct, interpretable musical patterns.

Beyond Semantics: The Role of Representational
Structure. To ascertain whether the predictive power of
sonification stems from the specific semantic encoding rules or
the underlying structural transformation, our investigation was

Figure 3. Visualization of protein-to-music translation as sheet music. Musical scores were generated from the first 30 amino acids of two
representative proteins. (a) Villin Headpiece (1VII): this structurally stable protein translates into a score with a constrained melodic range and
regular rhythm. (b) T4 Lysozyme (2LZM): this complex protein produces a score with greater melodic leaps and more intricate rhythms. These
visual differences are quantitatively supported: the T4 Lysozyme fragment exhibits a 35.1% higher melodic complexity score and a 7.4% higher
rhythmic complexity score compared to the Villin fragment. This is consistent with the greater diversity in its physicochemical properties.

Table 3. Comparative Performance of Classification Models on the Independent Test Set, Demonstrating the Impact of
Evolving Data Representation (1D vs 2D) and Model Paradigm

data model accuracy (%) precision recall F1-score

1D signal FFT + classical ML 45.86 0.45 0.46 0.43
1D CNN (deep learning) 61.31 0.61 0.61 0.60

2D spectrogram MFCC + classical ML 69.47 0.69 0.69 0.69
fusion model (deep learning) 84.00 0.84 0.84 0.84
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conducted on the comprehensive 12-class, 18,000-sequence
data set. The results, summarized in Table 2, provide
quantitative evidence suggesting that the structural trans-
formation from a 1D sequence to a 2D spectrogram is a major
contributor to the observed performance improvement.
Our theory-driven quantitative model, which incorporates

biophysical information, achieved an accuracy of 84.00%.
However, the most striking finding is that the control models
with inverted and random semantics still achieved remarkably
high accuracies of 82.69% and 81.08%, respectively. All three
2D sonification-based models substantially outperformed our
strongest 1D baseline (61.31%, see Table 3). This result
indicates that the vast majority of the predictive power is
unlocked by the 2D representation itself, which enables the
deep learning model to learn long-range dependencies and
complex textural patterns. While the structural transformation
is primary, biophysical semantics provide a consistent and
measurable performance advantage (a nearly 3-point gain from
the random to the theory-driven model), suggesting they offer
a valuable inductive bias rather than being an absolute
requirement.

The Synergy of Representation and Architecture.
Building on the finding that 2D sonified representations are
effective, we conducted a broader comparative analysis to
understand the synergy between data representation and
model architecture. The results, summarized in Table 3, reveal
a clear trend for our 12-class benchmark.
Our investigation began with the 1D physicochemical signal.

The classical approach (FFT plus ML) achieved an accuracy of
45.86%. Applying a modern 1D CNN improved the perform-
ance to 61.31%. We then advanced the data representation to
2D spectrograms using theory-driven mapping. A classical ML
pipeline with engineered MFCC features achieved 69.47%
accuracy, a significant improvement over both 1D methods,

confirming the intrinsic value of the 2D representation. The
highest performance was achieved by pairing the advanced
representation with an advanced model: our end-to-end fusion
model reached a final accuracy of 84.00%. This progression
suggests that high performance is unlocked when an enriched
2D representation is paired with a deep learning architecture
capable of exploiting its complexity.

Ablation Study: Deconstructing the Source of
Predictive Power. To further investigate the individual
contributions of the visual and acoustic feature streams, we
conducted an ablation study. As shown in Table 4, our full
fusion model achieved the highest accuracy at 84.00%.
Notably, the single-branch models also demonstrated sub-
stantial predictive capability. The Visual-Only model, relying
on the ConvNeXt backbone to process the raw spectrogram,
achieved 76.56% accuracy, while the Acoustic-Only model,
using the GRU to process extracted MFCC features, reached
77.17% accuracy.
The strong performance of both unimodal configurations

suggests that the 2D spectrogram generated through
sonification is an information-rich representation. It indicates
that functionally relevant patterns are encoded in a manner
that is accessible to both direct visual analysis (as an image)
and acoustic feature extraction (as a temporal signal). This
finding implies that the effectiveness of our approach is not
solely dependent on the final fusion architecture but is
fundamentally rooted in the descriptive power of the 2D
representation itself.

Comparative Benchmarking against Established
Methods. To situate our model’s performance in a broader
context, we benchmarked our final fusion model against
established PLMs (ProtBERT and ESM-2) and homology-
based search methods. The results are detailed in Table 5, and
visualized in Figure 4.

Table 4. Ablation Study of the Fusion Model on the Independent Test Seta

model configuration input features architecture accuracy (%) F1-score (macro)

fusion model (full) spectrogram + MFCC ConvNeXt + GRU 84.00 0.84
visual-only full spectrogram ConvNeXt 76.56 0.77
acoustic-only MFCC GRU + attention 77.17 0.77

aPerformance of the full model is compared against its individual visual and acoustic branches.

Table 5. Comparison of Performance and Computational Complexity against State-of-the-Art Modelsa

model accuracy (%) parameters (M) GFLOPs inference latency (ms/seq) training paradigm

ours (fusion model) 84.00 28.57 4.45 3.57 from scratch (12.6k sequences)
pretrained language models

ProtBERT 93.14 378.95 773.61 56.73 pretrained (BFD)
ESM-2 (35M) 91.78 33.49 68.05 12.16 pretrained (UR50)
ESM-2 (8M) 90.53 7.50 15.13 5.58 pretrained (UR50)

language models trained from scratch
ESM-2 (35M) 79.64 33.49 68.05 12.16 from scratch (12.6k sequences)
ESM-2 (8M) 78.53 7.50 15.13 5.58 from scratch (12.6k sequences)
ProtBERT 76.61 378.95 773.61 56.73 from scratch (12.6k sequences)

homology-based methods
BLAST + kNN (k = 5, Swiss-Prot) 87.56 (on classified) N/A N/A ∼338 N/A (search on 0.57 M sequences)
BLAST + kNN (k = 5, internal) 83.47 N/A N/A ∼80 N/A (search on 14.4k sequences)

aLatency for our model and PLMs was measured as the average of 100 runs on a single NVIDIA 4090 24GB GPU. The BLAST + kNN latencies
were measured on a system with a 20 vCPU Intel Xeon Platinum 8470Q processor and are reported per query sequence. GFLOPs for PLMs are
calculated for a sequence length of 1024. “From Scratch” models were trained on our data set (12,600 sequences) without any pretraining.
Pretrained models utilize weights trained on large external data sets like BFD or UR50. BLAST accuracy for the Swiss-Prot search is reported only
on the 61.86% of test sequences for which homologues could be found.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.5c01768
J. Chem. Inf. Model. 2025, 65, 12723−12736

12729

pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.5c01768?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


As expected, large pretrained models achieved the highest
overall accuracies, with ProtBERT reaching 93.14% and ESM-
2 reaching up to 91.78%. This outcome is attributable to their
extensive pretraining on massive external data sets (e.g., BFD61

and UR5062), which provides them with extensive prior
knowledge derived from evolutionary and structural patterns.
However, a more direct comparison of model architecture

and representational efficiency emerges when this pretraining
advantage is removed. When trained from scratch on our
12,600 sequence training set, our fusion model (84.00%)
achieved a higher accuracy than the transformer-based
architectures tested. It surpassed the ESM-2 models (78.53−
79.64%) and, notably, also the much larger ProtBERT model
(76.61%). This finding suggests that, for the task and data set
presented here, our sonification process may offer a data-
efficient representation, allowing a vision-based model to learn
relevant patterns effectively under data-limited conditions. This
indicates that under these data-limited conditions, a vision-
based model using our spectrogram representation was able to
learn relevant functional patterns more effectively than the
tested transformer architectures could from raw 1D sequences.
The homology-based BLAST + kNN approach against the

Swiss-Prot database achieved a high accuracy of 87.56%;
however, this was only on 61.86% of test sequences for which
it could find reliable homologues, leaving the remaining 38%
unclassified. As an internal control, applying the same method
against our own training set yielded an accuracy of 83.47%
across all test sequences. This comparison indicates that while

our model holds a slight performance edge over the internal
BLAST, a significant portion of the classification task within
this data set can be solved by sequence similarity alone. Thus,
our model offers a viable alternative that does not rely on
finding close homologues in a reference database, suggesting its
potential utility for sequences that lack clear evolutionary
relatives.

Validation on an External Enzyme Classification
Benchmark. To evaluate the generalizability of our frame-
work, we tested our approach on a larger data set constructed
from the external CARE enzyme classification benchmark.49

For this validation, we retrained our fusion model from scratch
on a new data set of 35,000 sequences. The model, still
employing our theory-driven mapping, achieved a competitive
overall accuracy of 90.44% on the 7000 sequence test set
(Table 6). This strong performance on a large-scale,
independent benchmark demonstrates that our sonification-
based approach is not overfit to our initial data set and
generalizes well to new classification tasks.

Figure 4. Comparative confusion matrices on the independent 12-class test set. The top row compares our model (a) against high-performing
pretrained models: ProtBERT (b) and ESM-2 (c). The bottom row directly compares models trained from scratch�ProtBERT (d) and ESM-2
(e)�and the homology-based baseline (f), highlighting our model’s data efficiency.

Table 6. Performance of the Fusion Model on the CARE
Benchmark Test Set

metric precision recall F1-score accuracy (%)

macro average 0.91 0.90 0.90 90.44
weighted average 0.91 0.90 0.90
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Generative Validation: De Novo Design of Viable GFP
Variants. To demonstrate the practical utility of our encoding
in a generative context, we integrated our framework into a
conditional diffusion model to guide the de novo design of
GFP variants. Our goal was to balance the dual objectives of
high functional fitness and sequence diversity, as selecting
solely for the highest fitness can lead to a narrow set of
solutions. To achieve this, we implemented a two-stage
selection strategy. First, we identified an elite pool of
candidates with the highest predicted fitness, ensuring a
baseline of high performance. Then, within this elite pool, we
selected the final variants using a composite score that weighed
both predicted fitness and the harmonic score derived from
our sonification framework.
As shown in Figure 5, this strategy yielded promising results.

Compared with a fitness-only selection method, our approach
generated a population of variants that not only maintained
high fitness levels but also exhibited greater sequence diversity
and explored a broader region of the harmonic score
landscape. To validate the structural integrity of these designs,
computational analysis using ESMFold was performed. The
results (Figure 6) indicated that the generated variants largely
retained the canonical GFP β-barrel fold with high confidence

and low RMSD values (0.062−0.265 Å) relative to the wild-
type, providing evidence that our sonification-derived harmon-
ic score may serve as a useful proxy for structural viability in
this context.

■ DISCUSSION
A central question motivating this study was whether our
encoding rules were arbitrary or essential for performance. Our
results provide a nuanced answer: the primary benefit of
sonification appears to stem from the structural transformation
of a 1D sequence into a 2D, information-dense representation.
The strong performance of the semantic ablation model
(81.08% accuracy) suggests that a deep learning model can
learn functional patterns from the spectrogram’s structure
alone, treating them as emergent properties. This ability to
extract meaningful regularities from a complex, semantically
arbitrary representation resonates with neurophysiological
findings on pattern recognition in uncertain musical contexts.63

However, this does not render the encoding rules meaningless.
The incremental performance gains from the inverted
(82.69%) and our theory-driven (84.00%) models indicate
that biophysically grounded semantics provide a valuable
inductive bias, an idea supported by our MD simulations that

Figure 5. Comparison of selection strategies for multi-objective protein optimization (A) multi-objective landscape: this scatter plot shows the
relationship between predicted fitness and normalized harmonic score. The Full_Method (orange) explores regions of higher harmonic scores,
achieving a mean harmonic score of 0.8396 ± 0.0029. In contrast, the Fitness_Only population (red) is concentrated in a zone of high fitness
(mean = 3.1831 ± 0.0404) but is constrained to a narrow range of lower harmonic values (mean = 0.8386 ± 0.0018). (B) Fitness distributions: the
Kernel density estimate plot compares the fitness distributions. The Full_Method exhibits a significantly broader distribution (fitness = 3.0271
± 0.4414) compared to the sharply peaked Fitness_Only population (fitness = 3.1831 ± 0.0404). The large standard deviation of the
Full_Method quantitatively reflects the mixed nature of its population, comprising both high-performance variants and other sequences that
contribute to its exploratory capability. (C) Sequence space visualization: principal component analysis visualizes the distribution of selected
sequences. The Fitness_Only population forms a compact cluster, corresponding to a diversity score of 7.0261%. The Full_Method
population occupies a visibly larger area of the sequence space, achieving a higher diversity score of 7.1159% and suggesting its ability to generate a
more varied set of high-performing sequences.
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validate the premise that mapping static sequence properties to
a dynamic medium is a physically meaningful approach. This
reframes our method within a broader intellectual tradition of
cross-pollination between biology and music, where such
analogies have been used both for analysis and the creation of
novel bioinspired materials.64−66

This 1D-to-2D transformation is a powerful and established
principle and is not a new hypothesis. Its success is a
cornerstone of landmark models like AlphaFold, which
converts sequence information into 2D distance maps to
capture the spatial relationships between all residue pairs.14,15

The same paradigm is fundamental to state-of-the-art methods
in genomics16,17 and RNA secondary structure prediction,18

where predicting 2D interaction maps from 1D sequences is
crucial for modeling LRIs. This principle is not confined to
biology; it is a core strategy in machine learning for capturing
LRIs, for instance, in graph neural networks where multiscale

representations have yielded order-of-magnitude performance
gains on LRI-centric benchmarks.67,68 By “folding” a sequence
into a spectrogram, we bring distant residues into proximity,
allowing a standard CNN to model these global dependencies
efficiently, without the quadratic cost of attention mecha-
nisms.69 This echoes other computational paradigms where
function is derived from global network properties.70

The richness of this representation is further evidenced by
our ablation study. The strong standalone performance of both
the Visual-Only and Acoustic-Only models demonstrates that
functional information is encoded in a way that is accessible
through different analytical lenses. This aligns with a growing
body of work showing sonification can be a valuable
complement to purely visual methods for data discovery in
the life sciences,71,72 and is conceptually analogous to how the
mammalian auditory cortex utilizes joint spectro-temporal
features for robust sound recognition.73

Figure 6. Computational validation of generated GFP variants. (a) Per-residue confidence scores (pLDDT) from ESMFold for the wild-type
baseline and three generated variants. (b−d) Predicted 3D structures of the three variants, colored by pLDDT score (blue: >0.9 and orange: <0.5).
The generated variants appear to retain the essential β-barrel fold.
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Positioning our work relative to state-of-the-art PLMs
highlights a trade-off. While large, pretrained models like
ProtBERT and ESM-2 achieve superior accuracy, their
performance advantage is removed when training is restricted
to our data set. Our fusion model’s competitive performance of
our fusion model when trained from scratch suggests that the
2D representation is highly data-efficient for this task. This
efficiency, however, comes with the overhead of a two-step
process involving preconversion of sequences to spectrograms.
This points toward a promising future direction: a truly end-to-
end architecture such as a Protein Spectrogram Transformer
(PST). Inspired by the audio spectrogram transformer,74 a
PST could learn to generate an optimal 2D representation
directly from the 1D sequence, combining the representational
power of our approach with the end-to-end learning paradigm
of PLMs.
We acknowledge the limitations of our study. Our data set,

while functionally diverse, is modest by the standards of large-
scale pretraining�a well-recognized challenge often necessitat-
ing customized approaches or domain adaptation techniques.75

Similarly, our generative experiments on GFP, while a
compelling proof-of-concept, require validation across a
broader range of protein families to establish the general-
izability of our harmonic score as a proxy for structural
viability. Nevertheless, this initial validation is critical, as it
suggests that features derived from our framework could serve
as a practical regularizer in the de novo protein design cycle,
where ensuring a viable three-dimensional fold is a cornerstone
of success.76,77

In summary, this work establishes protein sonification as a
viable strategy for creating computationally efficient and
information-dense representations for function prediction.
The primary benefit stems from the structural shift to a 2D
format, which allows deep learning models to learn emergent
functional patterns, with biophysical semantics providing a
beneficial but secondary guiding principle.

■ CONCLUSION
In this study, we developed and evaluated a quantitative
sonification framework as a novel method for protein analysis.
Our work demonstrates that translating protein sequences into
2D spectrograms creates a feature-rich representation that is
effective for function prediction, showing signs of data
efficiency and generalizability across different protein classi-
fication tasks. Through a series of systematic experiments, we
provide evidence that the primary source of the model’s
predictive power stems from the structural transformation of
1D sequence data into a 2D format. This allows for the capture
of complex patterns as emergent properties, a process that is
further enhanced but not solely dependent on biophysically
informed encoding rules. The utility of this representation
extends beyond predictive tasks, as shown by our proof-of-
concept where the encoding guided a generative model in
designing novel, structurally viable GFP variants. This study
contributes to a systematic evaluation of protein sonification as
a principled feature engineering strategy, highlighting its
potential for both predictive and generative protein modeling.
Ultimately, our work reinforces the paradigm of translating
biological sequences into other domains, not merely for artistic
inspiration,78 but as a structured approach for creating
powerful, bioinspired analytical methods and materials.65,66
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